

Government of Karnataka Department of Collegiate and Technical Education

C-20 Second Year Diploma Curriculum Electrical and Electronics Engineering

Curriculum Development Cell, DTE 2021-22

Curriculum Structure

III Semester Scheme of Studies- Diploma in Electrical and Electronics Engineering

	ry /			Hou	rs per v	week	hrs –		C Ma	CIE Marks		EE rks		ling	e		-
SI. No.	Course Categoi Teaching Department	Course Code	Course Name	L	Т	Р	Total contact h /week	Credits	Max	Min	Max	Min	Total Marks	Min Marks for Passing (incluc CIE marks)	Assigned Grad	Grade Point	SGPA and CGP/
					Integra	ited Co	urses										
1	PC/EE	20EE31P	Transformers and Alternators	3	1	4	8	6	60	24	40	16	100	40			
2	PC/EE	20EE32P	Transmission and Distribution	3	1	4	8	6	60	24	40	16	100	40			GPA
3	PC/EE	20EE33P	Switchgear and Protection	3	1	4	8	6	60	24	40	16	100	40			A & C(
4	PC/EE	20EE34P	Analog and Digital Electronics	3	1	4	8	6	60	24	40	16	100	40			oth SGF
	Audit Course								Bc								
5	AU/KA	20KA31T	ಸಾಹಿತ್ಯ ಸಿಂಚನ-II/ ಬಳಕೆ ಕನ್ನಡ-II	2	0	0	2	2	50	20	-	-	50	20			
			14	4	16	34	26	290	116	160	64	450	180				

*PC: Programme Core:: AU-Audit Course:: KA: Kannada:: L: Lecture:: T: Tutorial:: P: Practice

Curriculum Structure

IV Semester Scheme of Studies- Diploma in Electrical and Electronics Engineering

	Course			Hou	rs per v	veek	ek si		CIE Marks		SEE Marks			ding	e		A
SI. No.	ry / Teachi ng Depart ment	Course Code	Course Name	L	т	Р	Total contact /week	Credits	Max	Min	Max	Mi n	Total Marks	Min Marks for Passing (inclue CIE marks)	Assigned Grad	Grade Point	SGPA and CGP
				•	Integra	ted Co	urses				•	•		-			
1	PC/EE	20EE41P	Electric Motors	3	1	4	8	6	60	24	40	16	100	40			
2	PC/EE	20EE42P	Power Electronics	3	1	4	8	6	60	24	40	16	100	40			PA
3	PC/EE	20EE43P	Fundamentals of Automation Technology	3	1	4	8	6	60	24	40	16	100	40			A & CG
4	PC/EE	20EE44P	Computer Aided Electrical Drafting (CAED)	3	1	4	8	6	60	24	40	16	100	40			oth SGP
	Audit Course								B								
5	KA/EE	20EE45T	Indian Constitution	2	0	0	2	2	50	20	-	-	50	20			
Total					4	16	34	26	290	116	160	64	450	180			

*PC: Programme Core: AU-Audit Course:: KA: Kannada:: L: Lecture:: T: Tutorial:: P: Practice

Programme	Electrical and Electronics Engineering	Semester	III
Course Code	20EE31P	Type of Course	Programme Core
Course Name	Transformers and Alternators	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale:

Alternators (AC Generators) are used to generate bulk power in a power plant (Hydel, Thermal or Nuclear) Electrical Transformer is an important component in a power system used to step-up or step-down voltages for transmission and distribution. Alternators and Transformers form the core area in the field of Electrical Engineering and an Electrical Technician shall have the basic knowledge of Alternators and Transformers, viz., constructional features, operation, performance analysis, test, troubleshoot and maintenance process to be followed.

2. Course Outcomes/Skill Sets: On successful completion of the course, the students will be able to

CO-01	Explain all the workplace safety regulations to be followed when handling electrical machines.
CO 02	Conduct the performance analysis of transformers and alternators, draw their characteristics
CO-02	and determine the suitability of the given transformer and alternator for the specific application.
<u> </u>	List all the test parameters, testing procedure and demonstrate the testing and troubleshooting
0-03	of a given transformer and alternator.
CO 04	Install a given transformer and alternator and define the various preventive maintenance
LO-04	processes to ensure smooth running of the transformer and alternator.

Tutori al Lecture (Activit Practice We PO (Knowledge Criteria) (Performance Criteria) С y ek 0 Criteri a) 1 hour/ 4 hours/week (2 hours/batch twice in a 3 hours/week week week) 1.Magnetic circuit, MMF, reluctance and mention their units, Absolute 1. Simulate pure resistive, pure inductive permeability and Relative permeability and pure capacitive circuit and observe and mention their units, relationship the phase difference between waveforms between Flux, MMF and Reluctance. of Voltage & Current. simple problems on magnetic circuit OR 1a. Setup pure Inductor circuit. Measure V Refer 2 1 1,4 &I for a range of frequencies, calculate Table 1 inductive reactance (XI) and record them in a table. Plot a graph showing Xl as a 2. AC fundamentals function of the angular frequency. Concept of capacitive reactance, Observe the phase difference between V inductive reactance, and impedance. and I. Current and Power in a pure resistive, 1b. Setup pure capacitor circuit. Measure inductive and capacitive circuit. V &I for a range of frequencies, calculate

3. Course Content

			3. Current, Power and Power factor of R-L, R-C, R-L-C series and parallel circuits. Concept and Applications of resonance.		capacitive reactance (Xc) and record them in a table. Plot a graph showing Xc as a function of the angular frequency. Observe phase difference between V and I. 2.Simulate R-L, R-C, R-L-C series circuits and observe the phase difference between waveforms of Voltage & Current. OR 2.Set up RLC circuit. a. Measure V & I for range of frequencies and record measurements in table. b. Calculate corresponding impedance (Z), power factor and record in a table. c. Plot graph of Z vs angular frequency and power factor vs angular frequency. c. Estimate resonance frequency graphically and compare with theoretical value.
			 TRANSFORMERS 1. Basics: a. Working Principle of Transformer. b. Construction. c. Operation. 2. Classification of Transformers: a. Based on Construction b. Based on No. of phases c. Based on application Shell and Core type: Construction and application. 		Demonstrate workplace safety norms to be followed when handling electrical machines. 1a. Identification of different types of transformers based on i. Construction ii. No. of phases iii. Application. 1b. Identification of different parts of transformer
2	1, 2	1,4	3. Main Parts of Transformer: a. Tank b. Core c. Winding d. Insulation: i. Oil ii. Paper e. Bushings (HT/LT/NT) f. Conservator g. OLTC (ON Load/OFF Load Tap Changers) h. Breather i. Safety Devices: i. Pressure Relief Device ii. Buchholz Relay j. Instruments: i. Oil Temperature Indicator (OTI)/Transmitter ii. Winding Temperature Indicator (WTI)/Transmitter iii. Conservator Oil level Indicator/Transmitter	Refer Table 1	2. Identify the terminals of a single-phase transformer, test it for open circuit, short circuit and ground faults using a test lamp /megger, check the insulation resistance, identify and locate the possible faults. Suggest remedies.
3	1, 2	1,2, 4	 Derive emf equation, and explain transformation ratio (K). Explain Operation of a transformer on No-load with a vector diagram. Operation of a transformer On-load with vector diagrams. Draw equivalent Circuit of transformer. 	Refer Table 1	Follow Safety rules and Safe working practices 1a. Polarity test on single-phase transformer. 1b. Ratio test on single-phase transformer.

			3. Problems on emf equation, transformer on NO-load and ON-load conditions.		2 .Determine the efficiency and regulation of a single-phase transformer by direct loading.
4	1, 2	1,4	 Losses in Transformer List Various losses in a transformer. Voltage regulation and efficiency in the transformer. Write an equation for voltage regulation and efficiency. Condition for maximum efficiency. All day efficiency. Problem on all-day efficiency. 	Refer	Follow Safety rules and Safe working practices. 1. Pre-determine the regulation and efficiency of a single-phase transformer by conducting O.C. and S.C. tests, draw the equivalent circuit.
			 2. Pre-determine the Regulation and Efficiency of 1-ph transformer by conducting O.C. and S.C. tests. 3.Necessity and conditions for parallel operation. Parallel operation of single phase transformers with their load sharing. 	Table 1	2.Parallel operation of two single-phase transformers and analyse load sharing pattern for a given KVA rating.
5	1, 2	1,2, 4	1.Generation of 3-ph voltage, phase sequence, Star and Delta Connection in 3-ph system, Relation between line voltage and phase voltage in 3-ph Star, Relation between line voltage and phase voltage in 3-ph Delta system. Equation for a 3-ph power 2. Working principle & construction of three-phase transformers. Connection type: i. Star-Delta ii. Delta-Star iii. star-star iv. Delta-Delta v. Open delta vi. Scott.	Refer Table 1	Follow Safety rules and Safe working practices 1. Identify the terminals of a three-phase transformer, test it for open circuit, short circuit and ground faults using a test- lamp/megger, check the insulation resistance, identify and locate the possible faults. Suggest remedies.
			3. Vector Group i. Brief introduction of Vector Grouping ii. Type of Vector group: a. Yy0, Dd0 b. Yd1, Dy1 c. Yd6, Dy6 d. Yd11, Dy11. Problems on 3 phase star and delta circuits.		2.Connect three single-phase transformers for three-phase operation of delta-delta/ delta-star/ star-star/ star-delta. Measure phase and line voltages.
6	2, 3	4	1. Special purpose transformers Construction and working of current transformer (CT). Ref.7.2(9)		Follow Safety rules and Safe working practices 1a. Identify different types of special purpose transformers. 1b. Measure high current & voltage using CT and PT.

			 2. Construction, working of potential transformer (PT) 3.Construction, working of Pulse, Toroidal, Isolation transformer and Auto transformer 		2a. Ratio and polarity test on CT and PT 2b. Verify the voltage of autotransformer with different tapings. Ref.7(10,11,12)
7	1, 2	2,4	 1.Study Code of practice for selection, installation and maintenance of transformers. IS 10028 2. Study IS 1180 and IS 2026 standards: a. scope of IS 1180 and IS 2026 b. List transformers covered and not covered by IS 1180 c. List manufacturer of IS 1180 transformers. 2. HEC 60071 1 to HEC 60071 12 	Refer Table 1	Follow Safety rules and Safe working practices 1.Practice on use of IS/IEC standards.
			3. IEC 60071-1 to IEC 60071-12 standards for power transformers		2.Practice on use of IS/IEC standards
8	1,	1.Testing and Troubleshooting of given transformer-1		Refer	Follow Safety rules and Safe working practices 1. Demonstrate testing and troubleshooting of given transformer/Visit to nearby transformer test centre Ref.7(13)
	3		2.Testing and Troubleshooting of given transformer -2		2. Demonstrate installation and commissioning of Transformer.
			3. Installation and Commissioning of transformer		
9	1, 2 2,4		 1a. Working principle and construction of DC generator. 1b. Alternator: working principle, Construction of salient pole and non- salient pole alternator. 2.Full pitch Armature windings and Fractional pitch Armature windings. Advantages and dis- advantages of Full pitch and Fractional pitch Armature windings. 3. Relationship between P,N,f and Derivation of emf equation, Simple problems on E.M.F equation. 	Refer Table 1	 Follow Safety rules and Safe working practices 1a. Identify parts of the DC generator and build up voltage of the shunt generator. 1b. Identify the parts of an Alternator, note down the nameplate details and interpret it. 2. Identify the terminals, and test the field and armature windings of an Alternator for open circuit, short circuit and ground
10	1, 2	4	1. Armature reaction in an alternator with sketches, Effects of p.f of load on armature reaction and Effects of	Refer Table 1	faults using test lamp /megger, check insulation resistance, Identify and locate the possible faults and suggest remedies. Follow Safety rules and Safe working practices

Tota	Total in hours		39	13	52
13	1, 4	4	alternator. Ref.7(15) 3. Construction of an Energy efficient transformer. -Star rating of a transformer. -Benefits Of Higher Efficiency in Transformers. -Calculate Cost saving by buying an energy efficient transformer.		 and Perform general preventive maintenance of Alternators. Ref.7(16) 2a. Demo on different energy efficient transformers. 2b. Visit (or Virtual visit) to the transformer manufacturing industry.
			 Maintenance of the transformer. Installation and Maintenance of 		Follow Safety rules and Safe working practices 1a. Perform general preventive maintenance of the transformer. 1b. Demonstrate installation of Alternator
12	1, 2	4	 2. Effect of unequal voltage on load sharing. Effect of change in excitation and prime mover input power on distribution of load. 3. Hunting and its prevention in alternators. Necessity of cooling in alternators. Cooling agents. – Hydrogen cooling. 	Refer	 practices 1. Demo (Video) on Static excitation system. Ref.7(14) 2. Demo (Video) on cooling of Alternators
			alternators using synchroscope.1. Meaning and types of excitations.Static excitation system Ref.7(14)		Follow Safety rules and Safe working
11	1, 2	4	 Vector diagram of alternator on Load at different power factors. Necessity and Conditions for parallel operation of three-phase alternators. Parallel operation of three phase 		Follow Safety rules and Safe working practices Conduct parallel operation of 3-ph alternators by Dark Lamp OR Bright Lamp OR Synchroscope method.
			 armature reaction on terminal voltage. 2. Procedure for conducting O.C & S.C. tests on an alternator with circuit arrangements. 3. Effective resistance, leakage reactance & synchronous reactance. Calculate the synchronous impedance by O.C. & S.C test results. Equation for the no-load terminal voltage at different power factors. Voltage regulation definition and methods. 		Determine regulation of 3-phase alternator by conducting O.C & S.C tests by EMF method.
			armature reaction on terminal valtage		Determine regulation of 2 phase

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive).

Sl No.	week	Activity
1	1	 I. Explain the importance of resonance and its application. For a given RLC circuit. i. calculate voltage across R, L and C. ii. calculate Net Reactance. iii. calculate the resonance frequency. iv. At a given resonance frequency, calculate net reactance and voltage across L and C. II. 1. Explain Principles of induction and inductive reactance. 2. Explain self and mutual induction. 3. Explain behaviour of the inductor at low and High frequencies.
2	2	 I Explain Magnetic field around a current carrying conductor, Cork Screw Rule and Right-Hand Thumb Rule. Explain Faraday's laws of electromagnetic induction. Explain self-induced EMF and Mutually induced EMF and their application. Differentiate dynamically induced and statically induced EMF. Explain Lenz's law. Explain Right hand and Left-hand Fleming's rule. II Study the construction of a given 1kVA transformer and identify material presently used for lamination and insulation in different types and sizes of transformer. List Differences between Aluminium and copper used as winding materials in transformers.
3	3	 I. Construct and test 220/12V ,1A Step-down transformer. II. For a given single-phase transformer; 1. Calculate No-load power consumed and no-load power factor, 2. Calculate active and reactive components of No-load current 3. Draw the vector diagram for the transformer on No- load and ON-load conditions. 4. Explain the reasons for the low power factor.
4	4	 I. For a given transformer 1. List the different losses in a transformer 2. Methods of reducing iron losses and copper losses. 3. Explain variations of transformer efficiency against various load power factors. 4. Explain methods to enhance the life of the Transformers. II. 1. Explain construction and working of On-load tap changing (OLTC) transformer

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

5	5	 I For a given Star connected three-phase circuit. 1. calculate line voltage, phase voltage, line current and phase current. 2. Calculate active power, reactive power, apparent power and power factor. For a given Delta connected three-phase circuit. 1. calculate line voltage, phase voltage, line current and phase current. 2. Calculate active power, reactive power, apparent power and power factor. II 1. Explain construction of oil cooled power and distribution Transformers. 2. Explain different types of cooling used to cool the transformer. 3. Explain the properties and types of transformer oil. 4. Explain the process of transformer painting and need for painting. III 1.Explain construction of solar transformers. 2.Explain Vacuum Pressure Impregnated Transformer (VPI)
6	6	 Study CT and PT 1. Compare and contrast current transformer (CT) with potential transformer (PT) 2. Explain different tests conducted on CT and PT. 3.Explain installation and commissioning of current transformer/ potential transformer. 4.Explain repair/ replacement and maintenance of CT and PT.
7	7	 Study the Codes of practice IS 1180. 1. Explain Measurement of No-load Loss and Current. 2. Explain connection and phase displacement symbols for three-phase transformers 3. Rating plate details
8	8	Study the Codes of practice as per IS 10028 for selection, installation and maintenance of transformers and explain typical tests carried out before commissioning the transformer.
9	9	 Properties of magnets and their materials, preparation of artificial magnets, significance of electromagnetism, types of cores. Explain types of DC generators with circuit representation. Explain Conditions for voltage build up in shunt generator.
10	10	 Study harmonics generated in Generators and Transformers 1. List harmonics generated in generators and Transformers 2. Explain long term effects caused by harmonics 3. Limits and levels imposed on odd harmonics by IEC and IEEE 4. Explain how Improved winding configurations can reduce harmonics in generators
11	11	 Study the latest technological changes in this course and present the impact of these changes on industry. Study the data centre generators and 1.List requirements for Data centre generators 2. Specifications of typical Data Centre generator 3. Method employed to reduce harmonic content 4. Protection and cooling method 5.Applicable IEC standards
12	12	Study the latest technological changes in this course and present the impact of these changes on industry. Study the Watchdog Low Temperature Rise Transformers (three-phase and single-phase) and Non-linear transformers

		 List the features of watchdog transformer Advantages of watchdog transformer Typical specification of watchdog transformer List features of Non-linear transformer and its application
13	13	Study the latest technological changes in this course and present the impact of these changes on industry.

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion	
1.	CIE-1 Written Test	5	80	30		
2.	CIE-2 Written Test	9	80	30	Average of three tests	
3	CIE-3 Written Test	13	80	30	30	
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill test reduced to 20	
5	CIE-5 Skill Test-Practice	12	180	100		
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10	
Total (CIE Marks		60			
Semes	40					
Total	Marks				100	

5. Format for CIE written Test

Course Name		Transformers and Alternators	Test	I/II/III	Sem	III
Course Coo	le	20EE31P	Duration	80 Min	Marks	30
Note: Answ	ver a	ny one full question from each section. Eac	h full questi	on carries 1	0 marks.	
Section		Assessment Questions		Cognitive	Course	Marks
Section		Assessment Questions		Levels	Outcome	Marks
т	1					
1	2					
п	3					
4						
III	5					
111	6					
Note for th	e Cou	irse coordinator: Each question may have o	ne, two or th	ree subdivis	ions. Option	al questions

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
				Averag	ge Marks= (8+6	6+2+2)/4=4.5	5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Electrical Technology volume 2 - BL Theraja & A.K.Theraja S.Chand publication
2	Principles of Electrical Machines by V.K.Mehtha.S.Chand publication
3	Electrical Machines by M.N. Bandyopadhyay PHI Learning Pvt. Ltd.
4	Electrical Machines by Bhattacharya. Tata McGraw Hill Co.
5	Electrical Machines - J.B.Guptha Kataria & Sons Publications
6	Generation of Electrical Energy by BR Gupta. S.Chand Publication.
7	Fundamentals of electrical drives - G.K. Dubey Narosa publications.
8	Electrical Machines – Deshpande.
9	http://www.anuraghyd.ac.in/eee/wp-content/uploads/sites/3/power-systems.pdf
10	https://www.youtube.com/watch?v=FQ22UM0zyGs&feature=emb_logo
11	https://www.youtube.com/watch?v=mjLs40e 9YE&feature=emb logo
12	https://relaytraining.com/wp-content/uploads/2013/07/PT-Testing Back-to-the-
12	Basics RelayTraining.com .pdf
13	https://electrical-engineering-portal.com/testing-commissioning-current-transformer
14	https://www.youtube.com/watch?v=34Fj70_sU9I
15	https://search.abb.com/library/Download.aspx?DocumentID=SM103&LanguageCode=en&Docum
15	<u>entPartId=&Action=Launch</u>
16	https://www.stamford-avk.com/sites/stamfordavk/files/AGN007_C.pdf

8.1 CIE -4 Skill Test Scheme of Evaluation:

SL. No.	Particulars/Dimension	СО	Marks		
1	Portfolio evaluation of Practice Sessions(week1-week6)				
2	List the standard safety norms related with electrical machines				
3	 Building and Demonstration of the working Circuit including; i. Drawing of circuit diagram using right symbols. ii. Build the circuit as per the circuit diagram iii. Demonstrate the performance/operation of a machine iv. Document the necessary readings of the expected outcome 	05 10 35 10	2	60	
4	Viva -voce			20	
		Total Marks		100	

8.2 CIE -5 Skill Test Scheme of Evaluation:

SL. No.	Particulars/Dimension		со	Marks
1	Portfolio evaluation of Practice Sessions (week7-week12)			10
2	List the standard safety norms related with electrical machines		1	05
3	 Building and Demonstration of the working Circuit including; i. Drawing of circuit diagram using right symbols. ii. Build the circuit as per the circuit diagram iii. Demonstrate the performance/operation of a machine iv. Document the necessary readings of the expected outcome 	05 05 20 05	2	35
4	Explain Scope of any one IS standard (1008/1180/2026)		3	10
5	Identify the problem in a given machine and demonstrate the troubleshoem method used to rectify that problem. 10+20	oting)	3	30
6	Viva-voce			10
	Total M	/ arks		100

8.3 SEE Scheme of Evaluation:

SL. No.	Particulars/Dimension	со	Marks
1	Portfolio evaluation of Practice Sessions (1-13 week)		10
2	Building and Demonstration of the working Circuit including;i. Drawing of circuit diagram using right symbols.10ii. Build the circuit as per the circuit diagram10iii. Demonstrate the performance/operation of a machine15iv. Document the necessary readings of the expected outcome05v. Comply with the standard safety norms related with electrical machines05	1,2	45
3	Explain the criteria for selection, the process of installation and the importance of timely maintenance and consequences for a machine for a given application 5+10+5+5	4	25
4	Viva-voce		20
	Total Marks		100

9. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quant ity
1	Single-phase transformer	2kVA 1:1	3
2	Single-phase transformer	2kVA 1:0.5	2
3	1-ph Variacs	(0-300)V, 5 A	6
4	3-ph Variacs	(0-440)V,15A	2
5	Potential Transformers	220V-75V	2
6	Current Transformers	5A-1A	2
7	Motor (DC Shunt,220V) and Alternator(3-ph,440V) Set		1 Set
8	Loading Rheostats	Lamp Load	2
9	Wire wound Rheostats	Assorted-range	30
10	Analog Tachometers		3
11	Digital Tachometers		3
12	Synchroscope		2
13	Phase sequence indicator		2
14	Portable DC Moving coil ammeter	multirange (0-1-2-5-10- 20)	
15	Portable DC Moving coil Voltmeters	multirange (0-2-10-15-30- 75-150-300V)	
16	Watt meters (Dynamometer type)	i) LPF 75/300/600V,1/2A ii) UPF 75/300/600V,5/10A iii) UPF 75/300/600V,15/30A	2
17	Frequency meters read type and digital type		2
18	Portable pf meters		
19	Megger	500 V, 1000V, 1500 V	2
20	Earth tester		2
21	Tong tester analog and digital		2 each
22	Multimeters analog and digital		4 each
23	Electrical & Electronics Circuit Simulation software PSpice/ GNU Octave/MatLab	For a batch of 20 students	

Programme	Electrical and Electronics Engineering.	Semester	III
Course Code	20EE32P	Type of Course	Programme Core
Course Name	Transmission and Distribution	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale:

Electric power transmission is the bulk movement of electrical energy from a power plant, to an electrical substation. Transmission network is the interconnected lines which facilitate this movement. Efficient transmission involves reducing the currents by stepping up the voltage prior to transmission, and stepping it down at a substation at the far end. Electric power distribution is the final stage in the delivery of electric power, it carries electricity from the transmission system to individual consumers through distribution substation. An Electrical Technician shall have the knowledge of the various T&D systems, components of the T&D systems and constructional features, simulate its performance, losses, distribution line maintenance and substations and shall prepare an estimation using estimation software.

2. Course Outcomes/Skill Sets: On successful completion of the course, the students will be able to

CO-01	Conduct performance analysis of a given transmission and distribution lines in a real/ simulated environment
CO-02	Describe the procedure to install, test and maintain transmission & distribution lines.
CO-03	Prepare the list of equipment/materials with specifications to install a given transmission and distribution system.

		DO#	Lecture (Knowledge Criteria)	Tutorial (Activity Criteria)	Practice (Performance Criteria)
week	LU	P0*	3 hours/week	1 hour /week	4 hours/week (2 hours/batch twice in a week)
1	1	1,4	 1.Vectorial representation of AC quantities. Represent vectors in Rectangular, Trigonometric and Polar forms, Convert Rectangular form into Polar form and viceversa and problems on R to P and P to R. Arithmetic operations on vectors, problems 2. Concept of active power, reactive power, apparent power and power factor in AC circuit. 	Refer Table 1	1. Measure active power, reactive power, apparent power and power factor in a single-phase/ three- phase circuit using appropriate measuring instruments. Ensure improvement of PF by use of capacitor in single- phase/three phase circuit. Introduction to simulation software

3. Course Content

			calculate active reactive		1 Verify KCL and KVL using
			apparent power and power factor in a given single/ 3phase phase AC circuit.		simulation software.
			3a. Explain KCL and KVL 3b. Explain Thevenin's and Superposition theorem, application of theorems.		
			1.Various systems for power transmission and distribution: 2 wire AC, 3 wire AC and 3 phase 4		1.Simulate a given short transmission line-1
			wire AC systems. -Simple Problems -Compare HVAC and HVDC system.		2 Simulate a given short
2	1	1,4	2.Line Constants and Performance: -Classification of transmission lines based on distance. - Line constants -resistance, inductance and capacitance. -Short transmission line- equivalent circuit	Refer Table 1	transmission line-2. Find i. Sending end active and reactive power ii. Receiving end active and reactive power. iii. Voltage regulation and Transmission efficiency.
			3. Vector diagram of a short transmission line. -Equations for receiving end voltage, efficiency, voltage regulation and power factor simple problems		compare simulation results with calculated values. Ref.7(6)
			1. Skin effect, Ferrantic effect transposition of conductor and its necessity.		1.Simulation of Ferranti effect. Ref.7(7)
3	1	4	2. Corona: Phenomena, disruptive and visual critical voltages, corona loss. Advantages and disadvantages of corona. Methods of reducing corona. 3.Explain Transmission and Distribution losses. Ref.7(9,10,11)	Refer Table 1	2.Solve problems on Transmission and Distribution losses. Ref.7(8)
			1. Main components of overhead transmission lines (Supports, Cross arms and Clamps. Insulators, Conductors,	Defer	 1a. Identify Different components of Overhead Transmission lines. 1b. Identify various conductors viz., All aluminium conductor
4	1	4	 Conductors., Guys and Stays., Fuses and Isolating Switches, Continuous Earth Wire etc.). 2. Characteristics and applications of ACSR, AAC, AAAC conductors, types of ACSR and 	Table 1	 AAC, ACSK conductor. Identify HT/LT line insulators Install the shackle type insulator on HT overhead line Install the pin type insulator on the LT overhead line.

			 their applications, compare ACSR, AAC, AAAC conductors. Insulators-suspension, Pin Type, Shackle Type, Disc Type, Guy Strain, Pins for Insulators. 3. Guy Assembly, G.I. Wire, GO Switches, 11kV Cross-arms, L.T. Line Spacers, spacing between conductor, concept of length of span, sag on overhead line, Guarding, Types of Guarding. 		 fasten jumper in cross-arm of pole with pin insulator fasten the jumper in shackle type insulator fasten the jumper in the suspension type insulator.
5	1	4	1. UNDERGROUND TRANSMISSION LINES: - Classification of UG cables -General construction of a single core UG cable -Need of HT cables, advantages and disadvantages -Selection of HT and LT underground cable.	Refer	Comply with safety & IE rules while working on LT/ HT cables. 1a. Identify different types of HT/LT cables. b. Identify different parts of various underground cables. c. Select appropriate cable for given application.
5 1		-	 2.Construction of PVC, Construction of 3 core XLPE cables -Advantages and Disadvantages of Underground Power Cable System. 3. Scope of IS 7098-1 and IEC standards for various cables (IEC 	Table 1	 2a. Practice preparation of cables for termination and joining. b. Demonstrate termination kits and practice on terminations of LT/HT cables. Ref.7(21)
			1.Methods of laying UG cables. Faults in UG cable. Cable gland- different types of cable gland, lug, types.		1a. Identify various cable single and double glands. and lugs. b. Test the underground cables for open, short circuit & ground fault
6	1,2	2,4	2.Underground Cable Testing	Refer Table 1	and also check insulation resistance
			3. Bonding and grounding		2.Demonstrate bonding and grounding of raceways, cable assembly and panels.
7	1	4	1. Substation: Meaning of substation, Necessity of substation, classification, comparison between outdoor and indoor substation.	Refer Table 1	In grid map of Karnataka 1a. Locate 765kV, 400kV, 220kV, 110kV & 66kV Substations b. Locate 400kV, 220kV, 110kV & 66kV transmission lines. c. Locate 400kV HVDC station and Transmission line.

			 2. Code of practice related to substation. List the materials required for 66/11 KV substation with their specifications Ref.7(23,24) 3.Capacitor banks, specifications and calculation. Ref.7(17,18, 19) selection of capacitor bank. 		 2a. Read and Interpret Single line/ Layout drawings with Equipment and Protection codes as per ANSI. 2b. Read and Interpret Layout drawings of 220kV, 110kV & 66kV outdoor substations. Interpret various panel wiring drawings of substation equipment
8	1	4	Substation Energy meters: - 1a. Error, precision, accuracy, sensitivity, resolution and tolerance. Types of errors- gross error, random error, systematic error environmental, observation error and instrumental error. 1b. Trivector energy meter Ref.7(12) -Common Meter Reading Instrument (CMRI) Ref.7(14,15) -Class of accuracy of energy meters. 2. -Standards for electricity metering -Scope of IS 15707 -Scope of IS 15707 -Scope of IEC 62052-11 -Distributed Digital Fault Recorder (DDFR). Ref.7(16,17) 3.Maintenance and up keeping of daily Log Sheet at various Substation and energy	Refer Table 1	 1a. Demonstrate working of Trivector energy meter, Identify the class of accuracy of given energy meter. Ref.7(12) 1b. Practice on using MRI (Meter reading instrument) 2a. Take meter reading by using USB / Optical cable. 2b. Operation of SBM (Spot billing machine).
			1. Distribution System : Single line diagram of AC distribution system, Classification of AC distribution system, connection schemes of distribution system- radial ring main and		Observe the various components of the Distribution System by visiting the MUSS and prepare report Obtain:
9	1	2,4	interconnected systems. 2. Feeder, distributor and service main, characteristics of Feeder, distributor and service main.	Refer Table 1	 Number of feeders connected Energy consumption of each feeder Number of DTC meters connected Percentage of distribution
			3.Concept of voltage drop in feeders/distributors - simple problem on DC distributor fed at one end.		 losses 11kV Feeders Interruption Details Operation of 11 kV feeders supplying power to IP sets in open delta

	1,2		1. OPERATION OF 11KV/440V DISTRIBUTION SYSTEM - -List Various components of the 11 kV power system (Components: e.g. transformers, Isolators, CTs, PTs, Circuit breakers, LA's, etc.) -List Various types of Panels & Substation protection systems	Refer Table 1	Observe the various components of the power system by visiting the 11 kV substation and prepare report 1. List the job requirements as per the government policies and regulations 2. Observe the various components of the power system by visiting the11kV substation (Identify various substation equipment viz., isolators, over current relays, earth fault relay, differential relay, REF relay, lightning arresters, Surge counter, wave trap, Reactor, Capacitor bank, Circuit breakers – ACB, SF-6 and VCB etc.) 3. List the materials required for the 11 kV installation 4. Observe the substation erection and installation work 5. Observe the operation of distribution transformer 6. Check the poles set to proper depth, and are properly aligned 7. Observe the erection of channel
10		2,4	2a. Transformer parts and their function.2b. Specific health and safety precautions which must be taken when carrying out substation installation processes		
		3.Construction of Aerial Bundled (AB) Cables, - advantages and disadvantages, - AB Cables for LT Lines. -, AB Cables for HT Lines		on the pole 8. Observe the fixing of lightning arrester 9. Check the installation of earth connection as per standard procedure 10. Observe the lifting Observe the lifting of the transformer, to put it on the transformer bed in a safe and efficient manner 11. Observe the connection of low voltage cables" 12. Identify Aerial bundled cables for LT and HT	

11	2	2,4	 1.Maintenance schedule for distribution Transformer a. Explain the terms inspection, preventive maintenance and overhaul. b. Explain recommended schedule for inspection of Distribution transformers. c. Explain recommended schedule for preventive maintenance of Distribution transformers. d. Explain recommended schedule for overhaul of Distribution transformers. Ref 7(22) 2.Maintenance schedule for 11kV overhead lines a. Explain recommended schedule for inspection of 11kV overhead lines b. Explain recommended schedule for preventive maintenance of 11kV overhead lines c. Explain recommended schedule for preventive maintenance of 11kV overhead lines c. Explain recommended schedule for overhaul of 11kV overhead lines. d. Explain recommended schedule for overhaul of 11kV Overhead lines. Ref 7(22) 3.Maintenance schedule for 11kV UG system a. Explain recommended schedule for inspection of 11kV Overhead lines. Ref 7(22) 	Refer Table 1	Visit the nearby substation prepare report on 1. Maintenance schedule for distribution Transformer 2. Maintenance schedule for 11kV overhead lines 3. Maintenance schedule for 11kV UG system as per standard format
			maintenance of 11kV UG system c. Explain recommended schedule for overhaul of 11kV UG system Ref 7(22)		
12	3	2,3	 Prepare schedule of materials for providing single-phase OH and UG service connection for electrification of a residential building. List the materials used in transmission lines with their specifications. Classify the types of towers. Prepare a table showing voltage level, ACSR conductor used, 	Ref table 1	Prepare estimation manually/ using estimation simulation software

			number of discs insulators in suspension string and tension string 3. Prepare the schedule of materials for the 11 KV single circuit HT line for Rural Electrification."		
13	3	2,3	Estimate for Electrification of newly formed Residential Layout to an extent of 1045 KW including street light, water supply and STP installations. 1.Tapping and Extension 11KV line of (F-11) feeder of 66/11KV MUSS upto the Proposed Layout using Rabbit ACSR Conductor and 3*95 Sqmm XLPE HTUG Cable 2.Extension 11KV line Inside the Proposed Layout using Rabbit ACSR Conductor 3.Providing 11Mtrs Spun Pole Transformer Structure with allied Materials for erection of 3x250KVA and 1x100KVA 5 Star Rated Distribution Transformers on Concrete Bed. 4.Extension of LT Overhead line (3 Phase, 5Wire) inside the layout Premises and Providing Street Light Metering. 5. Calculate HT VR (voltage regulation) and LT VR.		Prepare estimation manually/ using estimation simulation software
Total i	n hou	rc	39	13	52

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive).

Sl No.	Week	Activity
1	1	 I. 1. Convert a given vector in rectangular form to polar form. 2. Convert a given vector in polar form to rectangular form. 3. Perform arithmetic operations on given vectors. II 1. solve problems on KCL and KVL 2. Solve problems on Thevenin's theorem. 3. Solve problems on the Superposition theorem. 4. calculate active, reactive, apparent power and power factor in a given single/ 3phase phase AC circuit.
2	2	Compare the relative amounts of Conductor Material in the Overhead System necessary for following systems of transmis-sion. 1.Two-Wire D.C. system with one conductor earthed 2.Single-phase 2-wire system with mid-point earthed 3.Single-phase, 3-wire system 4.Two phase, 4-wire system 5.Two-phase, 3-wire system
3	3	 I. Study Process Flow Chart for Construction of Transmission Lines and 1.Explain initial survey 2.Explain detailed survey 3.Explain the Right of way 4. List the factors to be considered for selections of poles for erection of transmission lines II 1. Explain String efficiency and methods of improving string efficiency.
4	4	Study Ujwal DISCOM Assurance Yojana (a flagship scheme of the Government of India, aimed at reducing the aggregate technical and commercial (AT&C) losses of state-owned distribution companies (DISCOMs) by 6%, from 21% in FY15 to 15% in FY19) 1.Explain the methodology involved in estimating T&D losses and Aggregate Technical and commercial losses.
5	5	 1.Explain Technical Specifications for 1.1 kV grade, Aluminium/Copper conductor, Power cables. 2. Explain Technical Specifications for 6.35/11 kV (Uo/U) Voltage Grade, 3-Core, 185 Sq. mm Aluminium Cable.
6	6	Explain the factors considered for selection of underground cables for a given application and list Operating limitations with cables.
7	7	Study Niranthara Jyothi Yojana (NJY) of GOK and 1.Explain the objective of this scheme 2.Benefits achieved through this yojana 3.List steps taken by government of Karnataka to flatten load curve

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of allpossible activities of the course. Student and Faculty are encouraged to choose activities that are relevant tothe topic and on the availability of such resources at their institution)

8	8	 1.Explain Duties of shift Engineer substation. 2. Explain Testing and Commissioning of Substation DC System.
9	9	 I. Study Distribution & Power Transformer Metering with condition Monitoring and Alarms 1. List the functions and specification of Distribution Transformer Metering Terminal 2. Explain how distribution transformer parameters (oil level, oil tem and winding temp. etc.) are monitored in real time. 3. List the software solution providers for Distribution & Power Transformer Metering with condition Monitoring. 4. Explain the benefits of real time monitoring of transformer
10	10	Explain commissioning of the distribution line using Aerial bunched cables.
11	11	 I Maintenance schedule for LT line and Service connection Explain recommended schedule for inspection of LT line and Service connection Explain recommended schedule for preventive maintenance of LT line and Service connection. Explain recommended schedule for overhaul of LT line and Service connection II. Study the latest technological changes in this course and present the impact of these changes on industry Case study on "High voltage distribution system (HVDS) implementation in BESCOM".
12	12	Study the latest technological changes in this course and present the impact of these changes on industry Case study on "Installation of auto reclosures on 11 kV feeders in BESCOM "
13	13	Study the latest technological changes in this course and present the impact of these changes on industry Case study on "Reduction in Distribution Transformer failure rate in BESCOM "

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	
2.	CIE-2 Written Test	9	80	30	Average of three tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
Total (CIE Marks	60			
Semes	ster End Examination (Practice)	100	40		
Total	Marks				100

5. Format for CIE written Test

Course Name		Transmission and Distribution	Test	I/II/III	Sem	III/IV			
Course Coo	le	20EE34P	Duration	80 Min	Marks	30			
Note: Ansv	Note: Answer any one full question from each section. Each full question carries 10 marks.								
Section	Assessment Questions			Cognitive Levels	Course Outcome	Marks			
Ι	1								
	2								
II	3								
	4								
III	5								
	6								
Note for th	e Cou	urse coordinator: Each question may have o	one, two or th	nree subdivis	sions. Optior	al questions			

in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Transmission, distribution and utilization – vol 3 B.L Thereja and A.K.Theraja.
2	Principles of Power System" by V. K. Mehta, Rohit Mehta S. Chand Publishers, 4th Revised edition 2008
3	Electrical Power Generation Transmission and Distribution by S.N.Singh, PHI Publication
4	Transmission and Distribution of Electric Power by J.B Gupta Katsons Publications.
5	Electric Power Distribution Automation by M.K Khedkar, University Science Press (Laxmi Publications)

6	https://www.youtube.com/watch?v=Knpt6zcK CU
7	http://vp-dei.vlabs.ac.in/Dreamweaver/objective9.html
8	https://www.easycalculation.com/physics/electromagnetism/eletrical-power-transmission-line- power-loss.php
9	https://electricalnotes.wordpress.com/2014/03/01/calculate-technical-losses-of-distribution-line/
10	https://blog.se.com/energy-management-energy-efficiency/2013/03/25/how-big-are-power-line-losses/
11	https://blog.se.com/access-to-energy/2018/06/29/effective-power-distribution-and-asset- monitoring-can-shelve-off-losses-in-transformer-services/
12	https://instrumentationforum.com/t/working-principle-of-trivector-meter/6996
13	https://www.youtube.com/watch?v=ZP-Gv ERN7k, https://www.youtube.com/watch?v=SgMhJQdVONQ
14	https://dhbvn.org.in/staticContent/tender/mm/specification/spec-cmri-453.pdf
15	https://www.youtube.com/watch?v=SgMhJQdVONQ
16	https://www.aimil.com/products/digital-fault-recording-systems
17	https://www.gegridsolutions.com/multilin/catalog/ddfr.htm
18	https://www.watelectrical.com/what-is-a-capacitor-bank-working-and-its-calculation/
19	https://www.gegridsolutions.com/hvmv equipment/catalog/high volt capacitor.htm#0v7
20	https://www.metartec.com/DataEditorUploads/R8%20- %20Capacitor%20banks%20and%20accessories.pdf
21	https://www.youtube.com/watch?v=oKhKFALKDAE
22	https://kptcl.karnataka.gov.in/storage/pdf-files/epra/mmdsystem.pdf
23	https://kptcl.karnataka.gov.in/storage/pdf-files/epra/Maintenance%20Schedule.pdf
24	https://kptcl.karnataka.gov.in/storage/pdf- files/epra/HAND%20Book%20Of%20manitenance%20Schedule%20For%20Staions%20&Transsio n%20Lines.pdf
25	Electrical Design Estimating and Costing. K.B.Raina & K.Battacharya. Khanna Publications
26	Electrical Installation Estimating and Costing. J.B.Gupta, S.K.Kataria and Sons

8.1 CIE-4 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	CO	Marks
1	Portfolio evaluation of Practice Sessions(1-6weeks)		10
2	1.Identify Aerial Bunched Cables used in distribution systems. 2.Identify various conductors (ACSR, AAC, AAAC)	2	10
3	Demonstrate Installation of the pin type insulator on LT overhead line.	2	15
4	Test the underground cables for open, short circuit & ground fault and also checkinsulation resistance.20Explain the scope of IEC-60502-1 and IEC-60502-25	2	25
5	 Demonstrate simulation of a given three-phase short transmission line Manual calculation and simulated values (Voltage and power at the receiving end). 05+10 Manual calculation and simulated values (Voltage regulation and transmission efficiency). 	1	30
6	Viva-voce		10
	Total Marks		100

8.2 CIE-5 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	CO	Marks
1	Portfolio evaluation of Practice Sessions (7-12 Week)		10
2	Presentation on substation visit OR distribution line maintenance . a. Report b. Presentation 10+20	2	30
3	Prepare estimation for the given problem manually OR using estimation simulation software	3	30
4	Calculate the size of capacitor bank required at given substation		10
5	Interpret given layout drawings of (220kV, OR 110kV OR 66kV) outdoor substations.	2	10
6	Viva-Voce		10
	Total Marks		100

8.3 SEE Scheme of Evaluation

SL. No.	Particulars/Dimension	CO	Marks
1	Report of Substation visit and Distribution line maintenance.		10
	1.Identify different types of HT/LT cables		
2	2. Identify the type of HT/LT line insulators	2	15
	3. Identify various sizes of copper wires and cable insulation FR/FRLS/FRLSH.		
	Demonstrate termination of LT/HT cables		
3	OR	2	35
	Demonstrate cable glanding		
	Verify the case study for correct Observation and recommend suggestions for		
4	the Case on operation of 11KV/440V distribution system.	2	20
4	OR	2	20
	Verify the case study for correct Observation and recommend suggestions for		
	the Case on distribution line maintenance 10+05		
5	Viva voce		20
	Total Marks		100

Sl. No.	Particulars	Specification	Quantity
1	Trivector energy meter		1
2	Common Meter Reading Instrument (CMRI)		1
3	Distributed Digital Fault Recorder (DDFR)		1
4	SBM (Spot billing machine)		1
5	Capacitor Banks		1
6	GNU Octave/ SCI LAB /PSCAD /MATLAB software		20
7	Electrical Estimation software		20

9. Equipment/software list with Specification for a batch of 20 students

Programme	Electrical and Electronics Engineering	Semester	III
Course Code	20EE33P	Type of Course	Programme Core
Course Name	Switchgear and Protection	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L: T:P: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale:

Electrical switch gears and protective devices are the main components of power systems in any type of industry like power sector, manufacturing, process industry, hospitals, hotels, commercial buildings etc. An electrical and electronics diploma graduate should be capable of testing, commissioning, troubleshooting and maintenance of the electrical switchgears and protection devices.

2. Course Outcomes/Skill Sets: On successful completion of the course, the students will be able to

CO-01	Demonstrate the operation and testing of a given switchgear.
CO-02	Select a switchgear for a given application and list the procedures for preventive maintenance of such a switchgear to ensure it performs optimally.
CO-03	Demonstrate the testing of a protection scheme for a given power system including all its elements (alternators, transformers, bus bars and feeders).
CO-04	Identify accessories of a control panel and demonstrate the testing procedure of a given LV control panel.

3. Course Content:

Week No.			Lecture (Knowledge Criteria)	Tutorial (Activity Criteria)	Practice (Performance Criteria)
	CO	PO*	3 hours/week Topics/subtopics	1 hour /week	4 hours/week (2 hours/batch twice in a week)
			1.Meaning of Switch gear, Types-Indoor type and Outdoor type, Essential features of Switchgear, List most commonly used Switchgear equipment and Protective Devices for switching and interruption of current. Importance of power system protection and Necessity of Protective Devices.		1.Identify various fuse sets viz., HRC, DO, 33KV fuse set, etc.
1	1	1,4	 2.Sources of Faults, Types of faults, Harmful Effects of short circuit current, Symmetrical and unsymmetrical faults on three-phase systems. 3.Fuse- Meaning, List the types of fuses with applications, Fuse Element Materials, Desirable features of Fuse elements, Characteristics of fuse. Important Terms: Current Rating of Fuse element, fusing current, fusing factor, Prospective current, cut off current, Pre-Arcing Time, Arcing Time, 	Refer table 1	2a. Measure and select the appropriate size of fuse wire.2b. Test the HRC fuse by performing a Load test.

			Breaking Capacity, Total Operating Time. HRC fuses –list the types and applications, general construction and working, Merits and demerits.		
2	1	1,2,4	1.Circuit Breaker – Meaning, Classification of Circuit Breakers, list the types -LV, HV types with applications. Explain the terminologies – Circuit Breaker Rating, Arc-Voltage, Arching Time, Pre – Arcing Time, Prospective Current, TRV, Recovery Voltage, RRRV, Total Break Time, Making current, Breaking current, Short circuit rating and Short-time current rating. 2.Construction, working principle and	Refer table 1	1a. Identify the various types of CB- MCB, ELCB, RCCB, MPCB and MCCB. Trace and locate MCBs used in your institution and note down their specifications. 1b. Dismantle MCCB/ELCB and identify various parts. 1c. Test the MCB and plot its inverse time characteristic curve.
			 applications of ELCB, RCCB, MCCB and MPCB. Concept of ACCL (automatic changeover with current limiter). 3.MCB- Types, Classification based on trip curves and their application, General construction and working, Characteristics of MCB. 		2a. Troubleshooting and servicing of LT circuit breaker. 2b. Test any commercially available ACCL.
3	1,2	2 1.2.4	1.HV Circuit Breaker- working concept. ACB- Working principle, Construction, Merits, Demerits & Applications.	Refer table	Visit to Substation. 1a. Identify the parts of circuit breaker and check its operation. 1b. Demonstrate test tripping characteristic of circuit breaker for over current and short circuit current.
			 2.VACUUM CB- Working principle, Construction, Merits, Demerits & Applications. 3.SF6 CB- Working principle, Construction, Merits, Demerits & Applications. Concept of RMU (Ring main unit) and LBS (Load Break Switch) 		 2a. Demonstrate Installation operation and maintenance of SF6 circuit breaker, Vacuum circuit breaker. 2b. Carry out timer test on circuit breakers. 2c. Demo on RMU
4	1	1,4	1. Protective Relay - Definition, Types of relays, Classification of protective relaying with applications, Meaning of Primary and Back up protections, Desired qualities of Protective Relaying, General Features of protective relays. Important Terms: pick up VA, Hold-on VA, drop out VA and Burden Pickup current, current setting, PSM, TSM, Time -PSM Curve.	Refer table 1	 1a. Demonstrate various parts of the relay and ascertain the operation. 1b. Demonstrate setting of pick-up current/ time setting multiplier for relay operation. Ref.7(7) 2a. Test the Earth Leakage
			application of Earth Leakage relay. Meaning of ZCT (Zero-Phase Current		Relay. (Anyone type). 2b. Test the

			Transformers), CBCT (Core balance CT) - construction, working and application. 3.Construction. Working principle and application of Induction type Electro- mechanical Over Current and Overvoltage Relays. Merits and Demerits of Electro- Mechanical relays. List and explain different Testing Methods for Relays		Electromechanical over current OR over voltage relay.
			 1a. Block diagram and working of Microprocessor/ Microcontroller based Overcurrent Relay. 1b. Causes of over voltages and under voltages, Effects of OV/UV. 2a. Construction, working and 		1.Test the Static Over Voltage and Under Voltage Relay and Plot its inverse time – Voltage Characteristics. OR 1.Test static Over Current Relay (Anyone type of static relay).
5	1	1,4	 application of Static relays- OV/UV relay and OCR relay. 2b. Lightning arresters & surge absorbers - Construction and principle of operation. 	Refer table 1	2a. Program and test the Numerical Over Current/ Earth Fault Relay for Normal inverse curve for
			 3a. Construction, working and applications of Numerical Relays. Comparison of Static Relays with Electro-Magnetic Relays and microprocessor/microcontroller-based relays. 3b. Concept of Multifunction Protection numerical Relays. 		various PSM and TMS and for definite Time operations. 2b. Demonstrate multifunctional numerical relays.
			Transformer protection: 1a. Explain Abnormalities & List different types of Faults. 1b. Construction and working of Circulating Current Scheme for Transformers Protection. Ref.7(10)		1.Test the operation of Buchholz Relay.
6	3	1,4	 2a. Construction and working of Earth Fault or Leakage Protection Systems for Transformer. 2b. Construction and working Stator Inter Turn Protection for transformers. 3a. Construction and working of Buchholz Relay. 3b. Transformer oil – Electrical properties, desired properties and applications of Transformer oil , BDVT. 	Refer table 1	2a. Conduct BDVT on Transformer oil. 2b. Demo on Restricted earth fault protection of Transformer.
7	3	1,4	 Alternator Protection-Types of Protection, Explain Abnormalities and List different types of Faults. Construction and working of Differential protection for Alternators. 	Refer table 1	Simulate/Test Alternator protection scheme.

ulate/Test the ation Distance Relay. ulate/Test the ation of rential Relay.
ulate/Test the ation Distance Relay. ulate/Test the ition of 'ential Relay.
ulate/Test the ition of rential Relay.
ential Relay.
t the operation of the rcuit breaker.
monstrate Substation ing.
al low voltage power bution panel- ify and study the types ntactors- Power actors and auxiliary actors. ssemble, perform
preventive maintenance, service, assemble and test the contactors.
ual test ulation test sting of control circuit. sting of power circuit nduct Logic tests
all and test function meter.
entify and test various iary relays emonstrate(video) locking operation.

			3.STP (Standard Temperature Pressure Control) panel- Construction and working.	panei.
13	4	4	2.AMF (Automatic mains failure) panel - Construction and working.	2.Test the operation of AMF
			1.APFC (Automatic power Factor Control panel) - construction and working.	1.Test the operation of APFC.
12	1,4	4	 2a. Working, typical specification and application: Thermal Overload Relays 2b. Working, typical specification and application: Bimetal Relays -Direct / CT operated. 3.Scope of IEC standard IEC 60947-4-1 	2.Test the operation of Thermal OLR
			1. Motor Control Centre (MCC): working, typical specification and application: Motor protection relay	1.Test the Motor Protection Relay.

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive).

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Students and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution).

Sl No	Week	Activity
1	1	 I. Explain the Phenomena of Short Circuit and overload with the help of a general circuit diagram. II. 1. Explain various parameters considered in selecting a fuse 2. Explain specification of fuse for a particular application 3. Explain different mounting methods
2	2	Document and present 1.Selection of MCB for various applications. 2.Gradation of MCBs rating for a particular application/circuit. 3.Specifications of MCB for a particular application.
3	3	Document and present the maintenance schedule of ACB, SF6 and VCB circuit breaker.
4	4	 Explain the specifications of ELR and Electro- mechanical over current Relay Draw and explain wiring of the trip circuit of MCCB/ ACB.
5	5	 1.Explain Numerical OCR wiring diagram. 2.Explain the concept of Restricted Earth fault protection. 3.Explain the concept of Voltage restrained Overcurrent relay.

6	6	 Calculate Fault current at each stage of following, given Electrical System SLD having details of. Main Incoming HT Supply Voltage is 6.6 KV. Fault Level at HT Incoming Power Supply is 360 MVA. Transformer Rating is 2.5 MVA. Transformer Impedance is 6%.
7	7	1.Explain the features of the Numerical differential protection relay. 2.Explain Inadvertent/Back Energization of Generator
8	8	Study commercially available numerical Distance relay (SIPROTEC 7SA61) 1. List the features of digital Distance relay 2. List functions of digital Distance relay
9	9	Document and present on Testing and maintenance of LV Circuit Breaker, CT and PT.
10	10	Study the Metering section, Bus Bar section, CT, PT, Contactors and relays in the control panel. Draw the SLD, list the components and Write the specification of a typical control panel and its accessories. Draw the metering circuit wiring diagram. Read control panel wiring and identify ANSI codes of components.
11	11	Study the latest technological changes in this course and present the impact of these changes on industry 1. Case study on "Medium voltage (MV) switchgear "
12	12	Study the latest technological changes in this course and present the impact of these changes on industry
13	13	Study the latest technological changes in this course and present the impact of these changes on industry

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	
2.	CIE-2 Written Test	9	80	30	Average of three tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
Total (CIE Marks				60
Semes	ter End Examination (Practice)		180	100	40
Total	Marks		100		

5. Format for CIE written Test

Course Name		Switchgear and Protection	Test	I/II/III	Sem	III/IV		
Course Code		20EE33P	Duration	80 Min	Marks	30		
Note: Ansv	ver a	ny one full question from each section. Eac	h full questi	on carries 1	0 marks.			
Section	Assessment Questions Cognitive Course Levels Outcome					Marks		
Ι	1							
	2							
II	3							
	4							
III	5							
	6							

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
Average Marks= (8+6+2+2)/4=4.5							

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Principles of Power System'' by V. K. Mehta, Rohit Mehta S. Chand, 4th revised edition 2008
2	Power System Protection and Switchgear by Buvanesh A Oza, Nirmalkumar C Nair, Rases P Mehta
	and Vijay H Makwana, McGraw HILL Education (India Pvt. Ltd) Newdelhi
3	J.B.Gupta "Switchgear & Protection", (edition), Katson Publisher,2008
А.	MadhavaRao T.S., 'Power System Protection - Static Relays', McGraw Hill, New Delhi,2nd Edition,
т	21st reprinted, 2008.
5	Handbook of Switchgears by BHEL
6	Testing, commissioning, operation and maintenance of electrical equipment by Sunil S Rao,
0	Khanna Publications
7	Protection relay: Power system protection - YouTube
8	Transmission Line Protection (21) - YouTube
9	Restricted Earth Fault Protection REF relay working principle - YouTube

10	TRANSFORMER PROTECTION ELECTRICAL TECHNOLOGY AND INDUSTRIAL PRACTICE -
10	YouTube
11	MOTOR PROTECTION PROTECTION OF INDUCTION MOTOR ELECTRICAL TECHNOLOGY AND
11	INDUSTRIAL PRACTICE - YouTube
12	Bus Bar Protection Busbar Differential Protection How busbar is protected - YouTube
12	Directional Over current relay Protection of parallel lines Directional over current protection -
15	YouTube
1/	Distance Protection Transmission Line Protection Impedance protection Protection of line -
14	<u>YouTube</u>
15	Differential protection in power transformer - YouTube
16	Protection of transformer - YouTube
17	Differential protection - YouTube
18	Transformer Differential Protection: Challenges and Solutions - YouTube
10	GENERATOR PROTECTION PART 1 GENERATOR CONNECTION GENERATOR
19	EARTHING GENERATOR FAULTS - YouTube
20	Earth Leakage Relay - ELR / How to Wire ELR & CBCT with MCCB / Working Principle of ELR -
20	<u>YouTube</u>
21	<u>Over current relay CDG 31 - YouTube</u>
	Smart WiFi Circuit Breaker Automatic Remote-Control Protection for Solar and any other
22	<u>appliances</u>
	https://www.youtube.com/watch?v=m1r-78m51ds

8.1 CIE-4 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension		CO	Marks
1	Portfolio evaluation of Practice Sessions(week1-week6)			10
2	 Identify different types of Fuses and their applications. Identify different types of LV circuit breakers and their applications 		1	10
3	Demonstrate preventive maintenance of given Circuit breaker		2	20
4	Demonstrate the operation of a given Switchgear and plot its characteristics i. Drawing of the Circuit diagram using the right symbols ii. Demonstrate testing of (relay/fuse/MCB) for a Given operation iii. plotting the characteristics	15 30 15	1	50
5	Viva voce			10
	Total Mar	'ks		100

8.2 CIE-5 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	CO	Marks
1	Portfolio evaluation of Practice Sessions (week7-week 12)		10
2	identify and test given relay / auxiliary relay	1	10
3	Demonstration of protection scheme05i. Drawing of the Circuit diagram using the right symbols05ii. Simulate/ Demonstrate working of protection scheme25	3	30

4	Testing of control panel wiring in LV control panelsi. Reading electrical drawings and demonstrate control panel wiring10ii. cable size and bus bar rating selection for given application.10iii. Testing control panel – Tracing control wiring, identifying components as per IEC and ANSI codes, test the components20	4	40
5	Viva voce		10
	Total Marks		100

8.3 SEE Scheme of Evaluation

SL. No.	Particulars/Dimension		CO	Marks
1	Portfolio evaluation of Practice Sessions (week1- week13)			10
2	 i. Selection of switch gears and its ratings for given application. ii. Selection of MCB rating and class as per applications / selection of fuse rating and type for given application. 		2	10
3	Demonstrate the operation of a given Switchgear and plot its characteristics 1 i. Drawing of the Circuit diagram using the right symbols 1 ii. Demonstrate testing of (relay/fuse/MCB) for a Given operation 3 iii. plotting the characteristics 1 OR 1 Demonstration of protection scheme 0 i. Drawing of the Circuit diagram using the right symbols 0 ii. Simulate/ Demonstrate working of protection scheme 5 OR 0 Testing of control panel wiring in LV control panels 1 i. Reading electrical drawings and demonstrate control panel wiring 1 ii. cable size and bus bar rating selection for given application. 1 iii. Testing control panel – Tracing control wiring, identifying components as per IEC and ANSI codes, test the components. 3	5 0 5 5 5 5 5 7 0	1/3 /4	60
4	Viva voce			20
	Total Mark	ĸs		100

9. Equipment/software list with Specification for a batch of 20 students

SI. No.	Particulars	Specification	Quantity
1	Different types of fuses (kit-kat fuse, cartridge fuse, glass		2 no.
1	fuse etc.) (For identification experiment)		Each
2	Single pole MCB	6 A ,220 V	6
3	Single-phase ELCB	6A ,220 V 30 mA	2
4	MCCB (for study / identification experiment only)	125 A 415V	1
	MPCB (Motor Protection Circuit Breaker) of any low		
5	current rating (for study / identification experiment	3 Phase 415 V	1
	only)		
6	Automatic changeover with current limiter (ACCL)		5

	Air circuit breaker		1
-	DPST and SPST knife switches or 2 pole, 3way, 6A		
8	selector switch		6
9	DPST and SPST knife switches or 2 pole, 3way, 6A selector switch	10A or 16 A or 32 A, 415 V	5
10	3 phase auxiliary contactor - any model with 2NO + 2 NC.	10 A , 415 V	5
11	Single-phase Auto transformer	Single-phase Auto transformer	6
12	Transformer (for voltage injection purpose)	240V/500V	4
13	Transformer (for current injection purpose)	240V/24V, 20A	4
14	Rheostats	45ohms 8.5 A, 100 ohms 5 A, 300 ohms 2.5 A	2
15	Thermal Overload Relay	3 Phase 415 V, 0-4.5 or 0-6 A or 0-10 A	4
16	Motor Protection Relay	3 HP, 3 Ph Induction Motor.	2
17	Digital Time Interval Meter (Digital stop watch may also be used as alternative)	0-999 ms, 0-99.9 sec, 0- 99.9 min	
18	Single-phase preventer (phase failure relay)		2
19	Lock out relay with 2 NO and 2 NC (any low rating model).		2
20	Electro-mechanical Relay Trainer Kit or module with 4 mm banana pin sockets and patch cords. (TYPE - Over Load Relay or Over Voltage Relay or Under Voltage Relay or Earth Fault Relay		1 set
21	Static Relay (OLR or OVR or UVR or EFR – ANY ONE) Trainer Kit or module with 4 mm banana pin sockets and patch cords.		1 set
22	Numerical relay or Digital relay (OLR or OVR or UVR or EFR – ANY ONE)-Trainer Kit or module with 4 mm banana pin sockets and patch cords.		1 set
23	Buchholz Relay		1
24	AUX. Current source / current injection kit suitable for the above trainer kits with 4 mm banana pin sockets and patch cords.	15A	3
25	AUX Voltage source / voltage injection kit suitable for the above trainer kits with 4 mm banana pin sockets and patch cords.	220 V AC /110 V DC	3
26	Fuse and MCB testing- trainer kit		2
27	P-spice/ GNU-Octave/MatLab		20 License
27	Multifunction meter		1
28	Trivector meter	3- phase	1
29	TCS(trip circuit supervision relay 24/30/48 V DC 110-125/220-250 V DC/AC		1
30	Lock out Relay		1

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Electrical and Electronics Engineering	Semester	III
Course Code	20EE34P	Type of Course	Programme Core
Course Name	Analog and Digital Electronics	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale:

Analog Electronic circuits are used to amplify, process and filter analog signals which are continuously variable, using amplifiers, Oscillators, switching circuits, operational amplifiers etc. Digital electronic circuits are usually made from large assemblies of logic gates. This digital logic circuitry is based on a binary system which has only two voltage levels, Low and High viz., Digital computers. Any intelligent electronic system is built by a combination of analog and digital circuits hence, it is imperative for any aspiring Technician to acquaint with the concepts of analog and digital electronics.

2. Course Outcomes/Skill Sets: On successful completion of the course, the students will be able to

CO 01	Identify the components of a given electronic circuit, list the uses and characteristics of the
00-01	components and test the components to ensure they are in working condition.
CO 02	Use datasheets to list the alternative electronic components for a given electronic circuit
0-02	ensuring the results/output remains the same.
CO 02	Build an electronic circuit for a given application and demonstrate its working either in real or a
0-03	simulated environment.
CO-04	Test a given circuit for desired result/outcome, identify the problem and troubleshoot to obtain
	the desired result/output.

Tutori al Lecture (Activit Practice (Performance Criteria) We (Knowledge Criteria) y CO **PO*** ek Criteri a) 1 hour 4 hours/week (2 hours/batch twice in a 3 hours/week /week week) 1a. Identify the different types of resistors. 1b. Measure the resistor values using **ANALOG ELECTRONICS** colour code and verify the reading by 1.Passive components (Resistor, measuring in the multimeter. Inductors and capacitors): 1c. Identify the power rating of carbon Refer 1,4 Introduction, symbols, units, 1 1 Table 1 resistors by their size types/classification, 1d. Identify different inductors and identification, selection and measure the values using LCR meter. applications. 1e. Identify the different capacitors and measure capacitance of various capacitors using LCR meter.

3. Course Content

			2.Semiconductors: Meaning, list semiconductor materials (Si, Ge,GaAs). -list characteristics of semiconductors. -Draw covalent bond diagram: Si, Ge, GaAs -Intrinsic Semiconductors-Two types of flow (free electrons & holes) Ref 7(1) 3.Doping a Semiconductor- Explain two types of Extrinsic Semiconductors (n-type and p- type). -concept of majority carrier and minority carriers. -Diode- formation, depletion region. Pof7(1)		 2a. Preparation of components, use of soldering iron and lead and flux. 2b. Standard Soldering practice to connect the components on base-board /PCB/assembly board (follow soldering standard).
2	2,3	1,4	 Ref7(1) 1. Diode-VI Characteristics, types, ratings and applications. Zener diode- reverse bias characteristics, voltage Regulation, shunt voltage regulator and their applications. 2.Bipolar Junction Transistors (BJT): Structure, Types, symbols, Construction, operation of (NPN/PNP) transistors. BJT Configurations, Transistor currents, alpha, beta and relationship between alpha and beta. 	Refer Table 1	 1a. Study and interpret data sheets of diodes and Zener diodes. 1b. Execute testing of given diode using multimeter and determine forward to reverse resistance ratio. 1c. Construct and test Zener based voltage regulator circuit.
			 3. CE input and output characteristics- cut off, saturation, and active regions. -Transistor biasing- definition, importance, list types. - Explain Voltage divider bias. Transistor as a switch in CE mode. -Stabilisation, thermal runaway, heat sink. Ref.7(7). 		b. Obtain output characteristics of BJT in CE configuration in physical mode. OR Simulate output characteristics of BJT in CE configuration Ref.7(6)
3	1,3	1,4	1. FET- types. MOSFET- definition, types, symbols, N type enhancement mode- construction, working, MOSFET characteristics	Refer Table 1	 1a. Identify terminals of a MOSFET and test. b. Obtain output characteristics of MOSFET in physical mode. OR Simulate output characteristics of MOSFET.
			2. MOSFET as switch, ratings.		2.Construct and test MOSFET application circuit (MOSFET as a switch)

			3. List applications of MOSFET, Differentiate between BJT and MOSFET		
		1,4	1. Rectifiers- half wave, centre tapped FWR, efficiency, ripple factor, PIV. Filters- definition, necessity, C and PI filters.		 1a. Identify the different types of fixed +ve and -ve regulator ICs and the different current ratings (78/79 series) 1b. Build +5V 1A DC Power Supply. OR Build +12V 1A DC Power Supply Ref.7(8,9,10)
4	3,4		 2. Regulated power supply- block diagram and applications. Regulator- working of 7805, mention operating voltages of 7809, 7812, 7905, 7912 Op-amp regulator, 723 regulators (Transistorized & IC based). 3. Testing and Troubleshooting of Regulated Power Supply. Ref.7(11,12) 	Refer Table 1	 2a. Identify different heat sinks for IC based regulators b. Identify the parts, trace the connection and test the DC regulated power supply with safety. c. Troubleshoot and service a DC regulated power supply.
5	1,3	1,4	1. Working of LED, IR LEDs, Photodiode, photo transistor and their characteristics and applications. Opto-couplers, circuits with Opto-Isolators. LASER diodes-characteristics and applications.	Refer	 1a. Identify the different types of LEDs and IR LEDs. 1b. Identify optocoupler input/output terminals and measure the quantum of isolation between the terminals 1c. Construct a circuit to switch lamp load using phototransistor
5			 2.Amplifier- faithful amplification, classification based on configuration, power, and frequency 3. Transistor CE amplifier with biasing, Working of Push pull amplifier. 	Table 1	2. Construct and test a common emitter amplifier with and without bypass capacitors. Ref.7(13)
			1. OPAMP– block diagram, operation, Characteristics, applications, μΑ 741 pin diagram.		1. Construct and test OP AMP as a Summer. Use an Analog IC tester to test the Analog ICs.
6	1,3	1,4	2.0PAMP applications– inverting, differentiator. Integrator, summer, voltage follower, and comparator.	Refer Table 1	2. Construct and test Astable timer circuit using IC 555. Construct and test mono stable timer circuit using IC 555. Ref.7(14)
			3. Timer– block diagram, pin diagram of IC 555, duty cycle, time-delay, Applications, A stable and Monostable multi-vibrators using IC 555.		Use an Analog IC tester to test the Analog ICs
7	3	1,2	DIGITAL ELECTRONICS 1. Definitions- bit, nibble, byte, word, and parity bit. Number system- definition, types, radix, decimal, BCD, binary and hexadecimal.	Refer Table 1	1. Solve problems on number system

			 2. Binary number system, Binary arithmetic: addition, subtraction, multiplication and division Complements: 1's, 2's. 3. Hexadecimal- addition, subtraction, Conversion- decimal to binary. decimal to hexadecimal 	-	2. Solve problems on conversion.
8	8 3	1,2,4	1. Boolean variable, complement, Boolean function, expression, truth table. Boolean Algebra- rules and laws. Ref.7(15)	Refer Table 1	1. An electronic telephone exchange is being powered by a normal power supply. However, looking at the criticality of the exchange, a power backup generator is also installed, which can supply power in case of power failure. An alarm circuit is to be designed. There will be two LEDs (one green and the other red) on the front panel of the exchange, such that the green LED glows when power supply is available. In case of failure of power supply, the exchange draws its power from a generator, and in this case, the green LED goes OFF and the RED LED glows. In case, the generator also goes down, both green LED and red LED go OFF and a buzzer starts ringing indicating that there is a major failure. Design and implement this control circuit for both the LEDs and the buzzer.
			2.Logic gates NOT, AND, OR- definition, symbol, Boolean equation, truth table and working. Logic gates NAND, NOR, EX-OR- definition, symbol, Boolean equation, truth table and working. De Morgan's theorems- statement and equations		2. Akshay's Automated Cafeteria orders a machine to dispense coffee, tea, and milk. Design the machine so that it has a button (input line) for each choice and so that a customer can have at most one of the three choices. Diagram the circuit to
			3. Karnaugh's map up to three variables- Simplification and drawing logic diagrams.		ensure that the "at most one" condition is met. Implement the Circuit
9			1. COMBINATIONAL LOGIC CIRCUITS- Half adder- block diagram, logic diagram using AND and XOR, truth table and working.		1a. Construct Half Adder circuit using ICs and verify the truth table 1b. Construct Full adder with two Half adder circuits using ICs and verify the truth table. Use a digital IC tester to test the digital ICs
	1,3	1,4	2. Full adder- block diagram, logic diagram using AND, OR and XOR, truth table and working.	Refer Table 1	2. Construct a circuit to verify the truth table of 4:1 multiplexer using IC 74153 and 1:4 Demultiplexer using IC 74139.
			 3. Multiplexer and Demultiplexer, 4:1 MUX, 1: 4 DEMUX List real life applications of MUX and DEMUX 		Use a digital IC tester to test the digital ICs

			1. Encoders and Decoders- definition, applications. Seven segment display- working		1. Construct a circuit to display 0-9 digits using standard Seven segment display with the help of decoder/ driver IC 7446/ or 7447. Use a digital IC tester to test the digital ICs.
10	1,3	1,4	 2. FLIP-FLOPS: S-R flip-flops, Clocked RS flip flop- block diagram, truth table, logic diagram. 3. D flip- flop, JK flip-flop and T Flip-flop and Master JK flip-flop - block diagram, truth table, logic diagram. 	Refer Table 1	2a. Identify different Flip-Flop (ICs) by the number printed on them 2b. Verify the truth tables of Flip-Flop ICs (RS, D, T, JK, MSJK) by connecting switches and LEDs.
			1. Shift Registers- definition, types and applications. Four-bit SISO using D Flip flops- block diagram, truth table and operation		1. Construct and test a four-bit SIPO register.
11	1,3	1,4	 2.Four-bit SIPO, PISO and PIPO shift registers using D flip flops- block diagram, truth table and operation. 3.Counters- definition, modulus concept, timing diagram, types and applications 		2.Construct and test four-bit PIPO register.
			1.Four-bit binary asynchronous counter- block diagram using JK flip flops, truth table, timing diagram and working		1. construct and test 4-bit Asynchronous binary up /down counter (IC 74LS193)
12	3,4	1,4	 2. Four-bit decade asynchronous counter- block diagram using JK flip flops, truth table, timing diagram and working. 3.Three-bit synchronous up counter- block diagram, truth table, timing diagram and 	Refer Table 1	2. Rig up and test the truth table of Decade Asynchronous Counter (IC 74LS90)
			working. 1.Digital to Analog converters: Binary weighted Resistor, DAC-		1.Construct and test (Binary weighted Resistor) Digital to Analog converter
13	1,3	1,4	 block diagram and operation. 2. D/A converter specifications: resolution, accuracy and conversion speed. -Selection criteria for DAC 3. Analog to Digital converters: Successive Approximation ADC- block diagram and operation. -Selection criteria for ADC 	-	circuit. 2.Construct and test the Analog to Digital converter circuit. Ref.7(16,17)
Tota	l in h	ours	39	13	52

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive). Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl No.	We ek	Activity
1	1	 Explain types of inductors, construction, specifications, applications and energy storage concepts. Explain types of capacitors, construction, specifications and applications. Dielectric constant. Explain Capacitor behaviour with AC and DC. Concept of Time constant of a RC circuit. Draw the atomic structure of Si, Ge, Ga and As. Draw the energy level diagrams for Insulators, Conductors and Semiconductors, and list values of energy gap for Ge,Si and GaAs. Draw the covalent-bond diagram for n-type and p-type material. Explain the effect of donor impurities on energy band structure. List the commercial applications of Ge,Si and GaAs.
2	2	 I. Study datasheets of diode 1N4001-1N4007, select a diode which has peak repetitive voltage (VRRM) of 100V, RMS Reverse Voltage of 70V, Average rectified current of 1 Amp and can withstand temperature of 150 degrees Celsius. Demonstrate the appropriate method of mounting the diode or its alternatives. II. Study given Handy Mobile Phone Charger Circuit, identify components required, test the components for working condition, build circuit in a bread board and test the circuit for desired output, if desired output is not obtained, troubleshoot to obtain desired result. Demonstrate the working of a circuit in the class. III. Demonstrate troubleshooting of simple DC circuit using any simulation software.
3	3	Study given basic LED Emergency Light with day light sensing Circuit, identify components required, test the components for working condition, build circuit in a bread board and test the circuit for desired output, if desired output is not obtained, troubleshoot to obtain desired result. Demonstrate the working of a circuit in the class. Demonstrate troubleshooting of LED Emergency Light circuit using any simulation software.
4	4	 1.Build a (0 –30) V variable output regulated power supply using IC LM317 circuit. test the circuit for desired output and demonstrate the working of circuits in the class. 2. Demonstrate the output voltage of different IC 723 metal/ plastic type and IC 78540 regulators by varying the input voltage with fixed load.
5	5	Demonstrate the operation of Automatic Fence Lighting Circuit with Alarm.
6	6	 I. Explain the criteria for selecting an appropriate Operational Amplifier for a given application. Demonstrate working of OP-AMP based Peak detector Demonstrate working of OP-AMP precision rectifier. List commercially available OP-AMP precision rectifiers and their applications. Build Adjustable Dual Timer Circuit using 555 Timer IC and demonstrate the working of circuit in the class.
7	7	 Explain applications of 1s and 2s complement. Explain applications of hexadecimal number system Explain advantages of hexadecimal number system Explain applications of BCD number system

		5. Explain limitations of BCD number system
8	8	 Two-Floor Elevator Numerous functions must be performed by the circuitry of an elevator (open/close door, move up/down, light up/down indicator, and so on). This example focuses on one aspect of a two-floor elevator: deciding when to move to the other floor. Draw the truth table for given logical conditions. write the logical expression. Draw the logical diagram. Implement the circuit. Test the circuit for all possible input conditions.
9	9	 I. A committee of three Individuals decides issues for an organization. Each individual votes YES or NO for each proposal that arises. A proposal is passed if it receives at least two YES votes. Design a circuit that determines whether a proposal is passed. Draw the truth table for given logical conditions. Prepare K-map and deduce simplified logical expression Draw the logical diagram Implement the circuit. Test the circuit for all possible input conditions II. Production line control Rods of varying length travel on conveyor belt Mechanical arm pushes rod within (+/- 5%) to one side Second arm pushes rods too long to other side rods that are too short stay on belt 3 light barriers (light source photocell) as sensors Design combinational circuit to activate arms. (Inputs are three sensors and outputs are two arm control signals)
10	10	 Study 8-to-3 Bit Priority Encoder (74LS148). 1.Explain how it can be used in magnetic positional control as used on ships navigation or for robotic arm positioning etc 2. Draw truth table for above application 3. Draw block diagram and logic diagram
11	11	 Study the latest technological changes in this course and present the impact of these changes on industry. Demonstrate basic Traffic light signal circuit using counters
12	12	Study the latest technological changes in this course and present the impact of these changes on industry.
13	13	Study the latest technological changes in this course and present the impact of these changes on industry.

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	
2.	CIE-2 Written Test	9	80	30	Average of three tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	

5	CIE-5 Skill Test-Practice	12	180	100	Average of two skill test reduced to 20		
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10		
Total (CIE Marks				60		
Semes	ster End Examination (Practice)	40					
Total	Total Marks 100						

5. Format for CIE written Test

Course Nar	ne	Analog and Digital Electronics	Test	I/II/III	Sem	III/IV
Course Cod	le	20EE32P	Duration	80 Min	Marks	30
Note: Ansv	ver a	ny one full question from each section. Eac	h full questi	on carries 1	0 marks.	
Section		Assessment Questions		Cognitive Levels	Course Outcome	Marks
Ι	1					
	2					
II	3					
	4					
III	5					
	6					
Note for th	e Cou	rse coordinator: Each question may have o	ne, two or th	ree subdivis	ions. Option	al questions

in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
Average Marks= (8+6+2+2)/4=4.5							

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Electronic Devices and Circuits theory by Robert L. Boylestad Louis Nashelsky
2	Electronics Principles by Malvino, Mc. Graw Hill, Third edition. 2000.
3	Electronics Devices and Circuits by Allen Mottershead, PHI Learning Pvt. Ltd., First Edition

4	Electronics Principles and applications by Charles A Schuler and Roger L Tokhiem, Sixth Edition, Mc. Graw Hill, 2008. 2. 3 4 5.
5	Electronics Analog and Digital by I. J. Nagrath, PHI Learning Pvt. Ltd., 2013 Edition
6	Linear Integrated Circuits by Ramakant A. Gayakwad, PHI Learning Pvt. Ltd., Fourth Edition.
7	https://www.youtube.com/watch?v=nCqQhqLTmxw
8	https://bestengineeringprojects.com/automatic-cut-off-power-supply/
9	https://www.circuitstoday.com/5v-power-supply-using-7805
10	http://www.ide.iitkgp.ac.in/Pedagogy view/example.jsp?USER ID=70
11	https://bestengineeringprojects.com/noise-free-dual-polarity-12v-power-supply-circuit/
12	https://bestengineeringprojects.com/problem-and-troubleshooting-of-power-supply/
13	https://bestengineeringprojects.com/regulated-power-supply-troubleshooting/
14	http://ee.cet.ac.in/downloads/Notes/ECLab/04-CE%20Amplifier.pdf
15	https://bestengineeringprojects.com/adjustable-dual-timer-circuit-using-555-timer-ic/
16	https://www.iitg.ac.in/cseweb/vlab/Digital-System-Lab/experiments.php
17	https://www.ti.com/lit/ds/symlink/dac0808.pdf?ts=1613370064634&ref url=https%253A %252F%252Fwww.google.com%252F
18	https://www.mepits.com/project/336/diy-projects/diy-project-digital-thermometer
19	Work sheets digital 1. https://www.liveworksheets.com/un1107740kg 2. https://nohoacsl.weebly.com/uploads/1/1/2/2/112297219/ digital electronics worksheet.pdf
20	https://inst.eecs.berkeley.edu/~ee100/su07/handouts/EE100-MultiSim-Tutorial.pdf
21	http://eceweb1.rutgers.edu/~psannuti/ece223/Manual-for-multisim.pdf

8. 1 CIE-4 & 5 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	CO	Marks
1	Portfolio evaluation of Practice Sessions		10
2	Visually identify the passive /active components by Code number and demonstrate if the component is in working condition	1	05
3	Identify and explain the Data Sheets for the given Electronic Devices	2	05
4	Demonstrate the working condition of components (Diode, BJT, MOSFET, Zener diode, Phototransistor, OP Amp etc.,)	3	10

5	Identify the problem in a given circuit and demonstrate the troubleshooting method used to rectify that problem. (RPS, OP Amp circuit, 555Timer circuit)	4	20		
6	 Building and Demonstration of the working Circuit including; i. Draw the Circuit diagram using the right symbols ii. Build the circuit as per the circuit diagram iii. Demonstrate the working of the circuit. iv. Document the necessary readings of the expected circuit outcomes. 	05 10 20 05	3	40	
7	Viva-voce				
Tota	1			100	

8.2 SEE Scheme of Evaluation

SL. No.	L. Particulars/Dimension o.					
1	Portfolio evaluation of Practice Sessions			10		
	Building and Demonstration of the working Circuit including i.Draw the Circuit diagram using the right symbols	10				
	ii. Identify and explain the Data Sheets of the electronic Devices.					
2	iii. Demonstrate the working condition of electronics devices	10	1,2,3	70		
	iv. Build the circuit as per the circuit diagram	15				
	v. Demonstrate the working of the circuit.	20				
	iv. Document the necessary readings of the expected circuit outcomes.	05				
3	Viva-voce			20		
	Tota	l Marks		100		

9. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
1	DC Regulated power supply	(0-30V, 2A)	10
2	DC Regulated Dual power supply	(+/- 15V,2A)	10
3	DC Regulated Dual power supply	(+/- 5, 1A)	10
4	Cathode Ray Oscilloscope	Dual trace, 25 MHz.	10
5	Signal Generator / Function generator	(5V P-P, 200mA)	06
6	DC Voltmeter	(0-1V)	10
7	DC Voltmeter	(0-10V)	10
8	DC Voltmeter	(0-30V)	10
9	DC Ammeter	(0 -100mA)	05
10	DC Ammeter	(0 -10mA)	10
11	DC Ammeter	(0 -100mA)	10
12	Digital Multimeter-	31 /2" 06	06
13	Analog Multimeter		06
14	LCR meter		02
15	Decade resistance box	(4 Dial)	10
16	Decade capacitor box	(4 Dial)	10
17	Analog IC Trainer Kit		10
18	Digital Trainer kit		10
19	Digital IC Tester.		02
	Electronic Circuit Simulation Software		
20.	(Multisim/Pspice/LT spice/GNU-Octave/MatLab-		20
	Simulink)		

ಮೂರನೇ ಸೆಮಿಸ್ಟರ್

ಕನ್ನಡ ಬಲ್ಲ ಡಿಪ್ಲೋಮಾ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

(ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ, ಸಂಸ್ಕೃತಿ ಮತ್ತು ಪರಂಪರೆ ಕುರಿತು)

Course Code	20KA31T	Semester : III	Course Group - AU
Course Title	ಸಾಹಿತ್ಯ ಸಿಂಚನ - 2	Category : Audit	Lecture Course
No. of Credits	2	Type of Course	CIE Marks : 50
Total Contact Hours	02 Hrs Per Week 26 Hrs Per Semester	Prerequisites Teaching Scheme (L:T:P)= 2:0:0	SEE Marks : Nil

ಸಾಹಿತ್ಯ ಸಿಂಚನ – 2 ಪಠ್ಯಕ್ರಮ - 20KA31T

26 ಗಂಟೆಗಳು

ಪಠ್ಯಕ್ರಮದ ಪರಿವಿಡಿ	ಬೋಧನಾ ಅವಧಿ
1. ಹೊಸಗನ್ನಡ ಸಾಹಿತ್ಯ ಚರಿತ್ರೆಯ ಪ್ರಭಾವಗಳು ಮತ್ತು ಪ್ರೇರಣೆಗಳು	01 ಗಂಟೆ
2. ಹೊಸಗನ್ನಡ ಕಾವ್ಯದ ಪ್ರಕಾರಗಳು -	02 ಗಂಟೆ
 ನವೋದಯ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. ನವ್ಯ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ 	03 ಗಂಟೆ
ಕೊಡುಗೆಗಳು.	03 ಗಂಟೆ
 ಬಂಡಾಯ ಮತ್ತು ಪ್ರಗತಿಪರ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. ದಲಿತ ಸಾಹಿತ್ಯ, ಮಹಿಳಾ ಸಾಹಿತ್ಯ, ವಿಜ್ಞಾನ ಸಾಹಿತ್ಯ ಮತ್ತು ಇತ್ತೀಚಿನ ಪ್ರಚಲಿತ 	03 ಗಂಟೆ
ಕನ್ನಡ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು.	03 ಗಂಟೆ
3. ವೈಚಾರಿಕತೆ ಕುರಿತಾದ ಲೇಖನ - ಜಿ ಎಸ್. ಶಿವರುದ್ರಪ್ಪ	01 ಗಂಟೆ
4. ಕಥೆ - ನೇಮಿಚಂದ್ರ	01 ಗಂಟೆ
5. ಪ್ರವಾಸ ಕಥನ - ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ ರವರ (ಕುಪ್ಪಳ್ಳಿ ಡೈರಿ ಪುಸ್ತಕದಿಂದ)	01 ಗಂಟೆ
6. ಪರಿಸರ, ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನ ಕುರಿತಾದ ಲೇಖನಗಳು	01 ಗಂಟೆ
7. ಪ್ರಬಂಧ - ಗೊರೂರು ರಾಮಸ್ವಾಮಿ ಅಯ್ಯಂಗಾರ	01 ಗಂಟೆ
8. ಪ್ರಚಲಿತ ವಿದ್ಯಮಾನಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಲೇಖನ - "ಪೇರು ಮಾರುಕಟ್ಟೆ ಮತ್ತು ಹಣಕಾಸು ನಿರ್ವಹಣೆ" ಕುರಿತಂತೆ	01 ಗಂಟೆ
9. ಕರ್ನಾಟಕ ಏಕೀಕರಣ ಚಳುವಳಿ - ಪ್ರೊ. ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ	01 ಗಂಟೆ
10. ಕನ್ನಡ ಸಿನಿಮಾರಂಗ ಬೆಳೆದು ಬಂದ ದಾರಿ ಮತ್ತು ನಾಡು-ನುಡಿ ಹಾಗೂ ನಾಡಿನ ಸಂಸ್ಕೃತಿಯ ಮೇಲೆ ಬೀರಿದ ಪ್ರಭಾವಗಳು	01 ಗಂಟೆ
11. ಕನ್ನಡದ ಸಾಮಾಜಿಕ ಉಪಭಾಷೆಗಳು (ಭಾಷಾ ಪ್ರಭೇದಗಳು)	01 ಗಂಟೆ
12. ಆಧುನಿಕ ಕನ್ನಡ ಸಾಹಿತ್ಯ ಚರಿತ್ರೆಯ ಒಂದು ಅವಲೋಕನ	02 ಗಂಟೆ
ಒಟ್ಟು ಬೋಧನಾ ಅವಧಿ 26 ಗಂಟೆಗಳು	26 ಗಂಟೆ

ಕನ್ನಡ ಬಾರದ / ಕನ್ನಡೇತರ ಡಿಪ್ಲೋಮಾ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಕನ್ನಡ ಕಲಿಸಲು ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

Course Code	20KA31T	Semester : III	Course Group - AU
Course Title	ಬಳಕೆ ಕನ್ನಡ – 2	Category : Audit	Lecture Course
No. of Credits	2	Type of Course	CIE Marks : 50
Total Contact Hours	2 Hrs Per Week	Prerequisites Teaching	SEE Marks : Nil
	26Hrs Per Semester	Scheme (L:T:P)= 2:0:0	

ಬಳಕೆ ಕನ್ನಡ – 2 ಪಠ್ಯಕ್ರಮ - 20KA31T

Table of Contents (ಪರಿವಿಡಿ)

26 ಗಂಟೆಗಳು

Part – 1	Teaching Hour
Necessity of learning a local language (Continuation).	
Tips to learn the language with easy methods (Continuation).	
Easy learning of a Kannada Language: A few tips (Continuation).	
Hints for correct and polite conversation (Continuation).	01 Hour
Instructions to Teachers for Listening and Speaking Activities (Continuation).	
Instructions to Teachers for Reading and Writing Activities (Continuation).	
Part – II	
Key to Transcription for Correct Pronunciation of Kannada Language (Continuation).	02 Hour
Instructions to Teachers to teach Kannada Language (Continuation).	
Part – III Lessons to teach Kannada Language	
(Speaking, Listening, Reading and Writing Activities with Explanation)
Lesson - 1 Personal Pronouns, Possessive Forms, Interrogative words - Part II	02 Hour
Lesson - 2 Permission, Commands, encouraging and Urging words (Imperative words and	02 Hour
sentences) – Part II	
Lesson - 3 Comparative, Relationship, Identification and Negation Words - Part II	02 Hour
Lesson – 4 Different types of forms of Tense (Use and Usage of Tense in Kannada) – Part II	02 Hour
Lesson – 5 Kannada Helping Verbs in Conversation (Use and Usage of Verbs) – Part II	02 Hour
Lesson - 6 Formation of Past, Future and Present Tense Sentences with Changing Verb Forms	02 Hour
Lesson – 7 Karnataka State and General Information about the State	02 Hour
Lesson – 8 Kannada Language and Literature	02 Hour
Lesson – 9 Do's and Don'ts in Learning a Language	02 Hour
PART - IV Reading and writing Practice of Kannada Language	
Lesson – 10 Kannada Language Script Part – 1	02 Hour
Lesson - 11 Kannada Language Script Part - II (Continuation)	02 Hour
Lesson – 12 Kannada Vocabulary List : ಸಂಭಾಷಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ್ನಡ	01 Hour
ಪದಗಳು - Kannada Words in Conversation (Continuation).	
Total Teaching Hours	26 Hour

ಸಾಹಿತ್ಯ ಸಿಂಚನ ಭಾಗ - II ಮತ್ತು ಬಳಕೆ ಕನ್ನಡ ಭಾಗ - II ಈ ಎರಡು ಪಠ್ಯಕ್ರಮಗಳಿಗೆ CIE - ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ ಮಾರ್ಗಸೂಚಿಗಳು :

Sl. No	Assessment	Туре	Time frame in semester	Duration In minutes	Max marks	Conversion
1.	CIE- Assessment - 1	Written Test - 1	At the end of 3^{rd} week	80	30	Average of three written
2.	CIE- Assessment - 2	Written Test - 2	At the end of 7 th week	80	30	tests : 1, 2 & 3 for 30 Marks
3	CIE- Assessment - 3	Written Test - 3	At the end of 13 th week	80	30	
4.	CIE- Assessment - 4	MCQ/Quiz	At the end of 5 th week	60	20	Average of three
5	CIE- Assessment - 5	Open Book Test	At the end of 9 th week	60	20	Assessment tests : 4, 5 & 6 for 20 Marks
6	CIE- Assessment - 6	Work book Consolidation & Activities	At the end of 11 th week	60 (Work book Submission)	20	
Total CIE – Continuous Internal Evaluation Assessment Marks					50	
Total Marks					50	

(Course Assessment and Evaluation Chart - CIE only)

ಸೂಚನೆ: 1.CIE - ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ 1, 2 ಮತ್ತು 3 ರ ಕಿರು ಪರೀಕ್ಷೆಗಳನ್ನು ಮತ್ತು ಮೌಲ್ಯಮಾಪನದ 4, 5 ಮತ್ತು 6 ರ ಪರೀಕ್ಷೆಗಳನ್ನು ಪ್ರತ್ಯೇಕ ಬ್ಲೂಬುಕ್ ಪುಸ್ತಕದಲ್ಲಿ ವಿದ್ಯಾರ್ಥಿಗಳು ಬರೆಯಬೇಕು

2.ಸಮಿಸ್ಟರ್ ಅಂತ್ಯದಲ್ಲಿ ವಿದ್ಯಾರ್ಥಿಗಳು, ತರಗತಿ ಕನ್ನಡ ಭಾಷಾ ಶಿಕ್ಷಕರಿಂದ ಮತ್ತು ವಿಭಾಗಾಧಿಕಾರಿ ಗಳಿಂದ ದೃಢೀಕರಣಗೊಂಡ ಕಾರ್ಯಪಠ್ಯಪುಸ್ತಕವನ್ನು (Work Book) ಮೌಲ್ಯಮಾಪನ ಭಾಗ-CIE- Assessment – 6 ರ ಪರೀಕ್ಷೆಯ ನಂತರ ಆಯಾ ವಿಭಾಗಕ್ಕೆ ಸಲ್ಲಿಸಬೇಕು.

4th SEMESTER

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Electrical and Electronics Engineering	Semester	IV
Course Code	20EE41P	Type of Course	Programme Core
Course Name	Electric Motors	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale:

Electric motors impact almost every aspect of modern living through the use of various Appliances. They are used at some point in the manufacturing process of nearly every conceivable product that is produced in modern factories and has nearly unlimited number of applications. An Electrical Technician is expected to Analyse the performance and select a particular motor for an application followed by testing, troubleshooting and maintenance of the same.

2. Course Outcomes/Skill Sets:

On successful completion of the course, the students will be able to

CO-01	Conduct performance analysis of a given electrical motor, draw its characteristics and determine
	the right motor for a specific application.
CO-02	Select, Install and test the motor to be used for a specific application.
CO-03	Describe test parameters, testing procedures and demonstrate the troubleshooting of a given
	electric motor to ensure it performs optimally.
CO 04	Construct power circuit and control circuits using appropriate components /devices to control
LU-04	the given electric motor.

3. Course Content

Week	k CO PO*		Lecture (Knowledge Criteria)	Lecture Tutorial (Knowledge Criteria) Criteria)	
			3 hours /week	1 hour	4 hours/week (2 hours/batch
			5 1100137 WCCK	/week	twice in a week)
1	1	1,4	 DC Motors: Working principle, back emf & voltage equation- simple problems. Types of motor-circuit diagram with voltage equation. -meaning of Torque targue developed by D C motors. 	Refer Table1	Follow Safety rules and Safe working practices (Demo) 1. Identify the terminals, and test the field and armature windings of a DC machine for open circuit, short circuit and ground faults using test lamp /megger, check the insulation resistance, identify and locate the possible faults.
1			-meaning of Torque -torque developed by D.C motors, torque equation [no derivation] - torque- speed relationship 3a. Characteristics of D.C. Motors -Torque – Speed, Speed – Load and Torque – Load Characteristics. 3b. Methods of speed control: – shunt field control	Table1	2. Control the Speed of the DC shunt motor by Armature voltage control. Plot the graph.

			-Voltage control		
2	1	1,2,4	1. Induction Motors : Working principle of induction motor. Rotating magnetic field produced by polyphase supply.	Refer Table1	Follow Safety rules and Safe working practices 1a. Identify the parts of the 3- phase squirrel cage induction motor, test it for open circuit, short circuit and ground faults using a test lamp / megger, check the insulation resistance, identify and locate the possible faults. Suggest remedies. 1b. Connect forward & reverse a 3- phase squirrel cage induction motor.
			 2. Construction of stator, squirrel cage rotor and phase wound rotor. Slip, frequency of rotor current. Problems. 3. Starting torques of squirrel cage and slip ring induction motor with expression. Condition for max starting torque. Effect of change in supply voltage on starting torque. 		2a. Identify the parts of 3 phase slip ring induction motor, test it for open circuit, short circuit and ground faults using test lamp/megger, check the insulation resistance, identify and locate the possible faults. Suggest remedies. Ref.7(5) 2b. Connect forward & reverse a 3-phase slip ring induction motor.
3	1	1,4	 Equation for torque under running conditions. Draw torque – slip curves. Relationship between full load torque and maximum torque, starting torque and maximum torque Explain Equivalent circuit of an induction motor. 	Refer Table1	Follow Safety rules and Safe working practices 1. Plot the Speed-Torque (Slip Vs Torque) Characteristics of 3-Phase Induction motor by mechanical loading (Brake-drum apparatus). Use Power Quality Analyzer & Motor Analyzer to measure various parameters. Ref.7(6)
			 3. Relationship between rotor power input, rotor copper loss, and Mechanical power developed and slip. -Problems on the above. 		2. Determine the efficiency of 3-phase squirrel cage induction motor by no load test/ blocked rotor test and brake test. Use Power Quality Analyzer & Motor Analyzer to measure various parameters.
4	1	1,4	 Starters: Necessity of starters and list the various types of starters. Main criteria for the selection of the starting method. 	Refer Table1	1a. Identify the parts of a DOL starter, test its parts, locate faults if any. Suggest remedies.

			2a. Construction, working and troubleshooting of D.O.L. Starter. 2b. Construction, working and troubleshooting of star-delta Starter.		1b. Connect, Start, Run and Reverse the direction of rotation of 3-phase Induction Motor using DOL starter. Ref.7(7)
			3a. Construction and working of Soft Starter.3b. Maintain, service and troubleshoot the AC motor starter		Follow Safety rules and Safe working practices. 2a. Identify the parts of a Star- Delta starter, test its parts and locate faults if any. Suggest remedies Trace the start terminals and end terminals of three-phase windings and mark the terminals u1,v1,w1 and u2,v2,w2 Connect, Start, Run and Reverse the direction of rotation of 3-phase Induction Motor using star delta starter. 2b. Maintain, service and troubleshoot the AC motor starter
			 Speed Control of induction motor: Change of applied voltage method. Change of number of poles. 		Follow Safety rules and Safe working practices. 1. Speed control of IM using any one method, Use of Power Quality Analyzer & Motor Analyzer to measure various parameters.
5	1,3	2,4	 2. Speed Control of induction motor: Change of frequency Rheostat control method. 3. Testing and troubleshooting procedure of three-phase Induction motor. General preventive maintenance procedure of three-phase Induction motors. 	Refer Table1	 2a. Testing, troubleshooting and Servicing of three-phase Induction motors. 2b. Perform general preventive maintenance on 3-ph Induction motor. Ref.7(8,9,10,11)
6	1	1,4	 Synchronous Motors: Working principle, construction, and method of starting of synchronous motor. Compare the synchronous motor with the induction motor. Effect of increased load with constant excitation. Effect of change in excitation at constant load 	Refer Table1	 Follow Safety rules and Safe working practices 1. Start, Run and Reverse the direction of rotation of the synchronous motor. 2. Plot V and inverted V curves for synchronous motor, Use Power Quality Analyzer &
			3. Effect of excitation on armature current & power factor.		Motor Analyzer.

			1. Effect of excitation on leading, lagging and zero power factor.		1. Demonstrate troubleshooting of synchronous motors.	
7	1	1,2,4	2. Synchronous condenser and its application. Ref.7(19). Refer Table13. Hunting and phase swinging, losses and methods of starting of 		2. Case study of Synchronous condenser.	
8 1,2		1,4	 IEC/ NEMA motors, Enclosure protection classes available protection classes are IP23, IP44, IP54 -IEC 60034-4-1:2018 standard for synchronous motors. Synchronous reluctance motors. Ref.7(22). 	Refer Table1	 Demonstrate different protection classes. 2a. Demonstrate Installation of synchronous motor and Induction 	
			3. Procedure for Installation and Maintenance of sync motors and Induction motor.		motor. 2b. Perform general preventive maintenance of sync motors. Ref.7(20,21)	
9	1	1,4	1. Single-phase motors: Working principle, construction and characteristics. Ref.7(28).	Refer Table1	 1a. Identify and connect the starting winding, running winding, capacitor centrifugal switch terminals rotation of 1-ph capacitor start Induction Motor. 1b. Start, Run and Reverse the direction of rotation. 	
			 Resistance Split phase motor -Capacitor Start Induction motor. Working Principle & characteristics of Induction Generators and its applications. 	-	2. Perform general preventive maintenance of 1-ph Induction Motors.	
			1. Special Machines: Servo motor: Working, construction and applications, types, speed-torque characteristics, specifications, control mechanism. Ref.7(29). Working, construction and applications of Stepper motor and Torque motor and spindle motor.	Refer	1.Identify the parts of special machines: Servo motor, universal motor, stepper motor and brushless DC Motor, and test the coils and windings for its working condition.	
10	1	1,4	 2. Working, construction and applications of Universal motor, Reluctance Motor, Permanent Magnet Synchronous Motor (PMSM). 3. Working, construction and applications of Two phase Four Pole Permanent magnet motor, Brushless D.C. Motors, specification for EV motors. Ref.7(31) 	Kefer Table1	2. Demonstrate applications of special machines.	
11	2,4	2,3	1. Industrial application of motors.	Refer1. Calculate the total systemTable1efficiency by combining the foukey components of a motor		

			-Select a motor for a given industrial application. Ref.7(12,13,14)	system: the motor, drive, transmission and load (e.g., pump, fan, compressor, etc.) by using a motor testing tool(software). Ref.7(15,16,17,18)
			2 Motor testing tool for energy efficiency. Ref.7(25,26,27) 3. Draw the standard symbols of control components Different types of push button switches- single element and two element ON/OFF switches, mushroom head emergency stop switch, illuminated type, key lock type, selector switches and limit switches.	2.Identify different types of push button switches- single element and two element ON/OFF switches, mushroom head emergency stop switch, illuminated type, key lock type, selector switches and limit switches.
			1. Working principle of Bi- metallic Overload Relay, Time Delay Relays - Electronic timer and electro-mechanical Pneumatic timer and Single- Phase preventer. Ref 7(32) 2.Parts of a contactor, number of	 1a. Identify Bi-metallic Over Load Relay, Time Delay Relays - Electronic timer and Electro- mechanical Pneumatic timer and Single-Phase preventer. 1b. Identify the parts of a contactor, number of NOs, NCs, nature of coil supply AC/DC, voltage ratings and current ratings. Note down the technical specifications and terminal identification number
12	4	3,4	 3.Draw a control circuit for DOL starter and control circuit for DOL starter and control circuit for forward and reverse operation of a motor with interlocking function using auxiliary contact. 	2a. Rig up and test the following applications of logic gates using push button switches, contactor and indicators. a) Starting from two different locations (OR Function) b) Stopping from one position (NOT Function) c) Two hand operation (AND Function) d) Stopping from two different locations (NOT+OR or NOR Functions) e) Stopping if both signals are given (NOT+AND or NAND functions) f) Memory function (Signal is maintained or holding). h. XOR and XNOR operation. 2b. Rig up and test Direct On Line Starter. Ref 7(33)
13	4	3,4	1.Draw a control circuit for forward and reverse operation of a motor with interlocking function using combined auxiliary contact and push buttons.	1.Rig up and test the control circuit for forward and reverse operation of a motor with interlocking function using combined auxiliary contact and push buttons.

	2.Draw a control circuit for a semi-automatic star delta starter.3.Draw a control circuit for a fully automatic star delta starter.		2.Rig up and test the control circuit for a fully automatic star delta starter. Ref 7(34)	
Total in hours	39	13	52	

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive).

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an example and not inclusive of all possible activities of the course. Students and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution).

SI No	Week	Activity
1	1	Study the construction of a given DC motor and identify material presently used for construction of YOKE, poles and field winding, armature winding and brushes.
2	2	Compare and contrast Induction motor with Transformer.
3	3	 Study Low voltage General performance cast iron motors and 1. Explain IEC 60034-30-1:2014 standard 2. List the motors covered in IEC 60034-30-1:2014 standard 3. List the motors excluded from IEC 60034-30-1:2014 standard 4. Explain the four International Efficiency (IE) classes 5. Explain mounting and cooling arrangements 6. Degrees of protection: IP code 7. Explain thermal classes (B, F and H) and insulation class 8. Tabulate and present Minimum 50 Hz efficiency values defined in IEC/EN 60034-30-1:2014 (based on test methods specified in IEC 60034-2-1:2014)
4	4	 Study soft starter Explain how soft starter improves performance in Pumps, fans, conveyors and compressors Compare different starting methods (DOL, Star Delta and Soft starters) and explain problems which are prevented using soft starters. Explain the selection process involved in selecting the right soft starters for a given application. Explain the benefits of soft starters. Typical Technical specification of soft starter.
5	5	Study V/f method of speed control and 1. Explain V/f method of speed control 2. List Advantages of V/f method
6	6	Compare synchronous motor with Induction motor
7	7&8	 Study given synchronous motor List applications of synchronous motor Explain fixed speed and variable speed Synchronous motors List applications of fixed speed and variable speed Synchronous motors Explain Methods of cooling

		5. Explain the Excitation method for a given application.
8	9	 Study Totally enclosed squirrel cage single-phase low voltage motors, Sizes 56 - 100, 0.065 to 2.2 kW. 1. Explain CSR (capacitor start and run), PSC (run capacitor) and PSC-regulation 2. Typical Specification of PSC motor, CSR and PSC -regulation 3. Explain Cooling system, insulation class and mounting arrangements
9	10	 Study electric motors used in Electric vehicles. 1. List the motors used in Electric vehicles 2. Explain speed -torque characteristics of Each motor. 3. Explain Electrical specifications of each motor 4. List the company's manufacturing Four-wheeler and Two-wheeler EV
10	11	 Study the case "World's largest multi-stage water pumping stations project designed to bring much needed water to the Indian state of Telangana." 1. List Type and size of motors used in the project 2. Quantity of water lifted daily in TMC 3. Size of pumps used to lift water 4. Total power required for the project <u>https://new.abb.com/drives/media/kaleshwaram-lift-irrigation-system-abb-success-story</u> <u>https://www.youtube.com/watch?v=5wXOSVCHf38</u>
11	12	 Study the case "Mahatma Gandhi Kalwakurthy Lift Irrigation Scheme " 1. List Type and size of motors used in the project 2. Quantity of water lifted daily in TMC 3. Size of pumps used to lift water 4. Total power required for the project <u>https://new.abb.com/news/detail/4291/abb-pumping-technology-helps-rescue-parched-farms-and-villages-in-india</u>
12	13	Study the latest technological changes in this course and present the impact of these changes on industry.

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion	
1.	CIE-1 Written Test	5	80	30		
2.	CIE-2 Written Test	9	80	30	Average of three tests	
3	CIE-3 Written Test	13	80	30	30	
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill	
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20	
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10	
Total (CIE Marks				60	
Semes	ter End Examination (Practice)		180	100	40	
Total	Marks				100	

5. Format for CIE written Test

Course Name		Electric Motors	Test	I/II/III	Sem	III/IV
Course Coo	le	20EE41P	Duration	80 Min	Marks	30
Note: Answ	ver a	ny one full question from each section. Eac	h full questi	on carries 1	0 marks.	
Section		Assessment Questions		Cognitive Levels	Course Outcome	Marks
Ι	1					
	2					
II	3					
	4					
III	5					
	6					
	~			1 1	· <u> </u>	1

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students			
No.							Score			
		2	4	6	8	10				
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8			
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6			
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2			
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2			
	Average Marks= (8+6+2+2)/4=4.5									

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Electrical Technology volume 2 - BL Theraja & A.K.Theraja S.Chand publication.
2	Principles of Electrical Machines by V.K.Mehtha.S.Chand publication.
3	Electrical machines - Theory and Practice by M.N. Bandyopadhyay PHI publication.
4	Electrical Machines by Bhattacharya. Tata McGraw Hill Co. 5. Electrical Machines - J.B.Guptha Kataria & Sons Publications
5	https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A3212&LanguageCod e=en&DocumentPartId=&Action=Launch

6	https://search.abb.com/library/Download.aspx?DocumentID=B5.0205&DocumentPartID=&Actio n=Launch
7	https://new.abb.com/docs/librariesprovider53/about-downloads/low-voltage-motor-guide.pdf
8	https://assets.new.siemens.com/siemens/assets/api/uuid:8e9204f9-1860-4720-9d6b- 2be548d915d0/version:1560800077/troubleshooting-induction-motors.pdf
9	https://www.youtube.com/watch?v=390nOrLHAaw&t=3176s
10	https://www.youtube.com/watch?v=BoFToRcfL0k
11	https://www.youtube.com/watch?v=VCtiehg2pZc
12	h https://motors-pumps.gainesvilleindustrial.com/category/all-categories-electric-motor
13	https://www.controleng.com/online-courses/how-to-specify-motors-for-more-efficient-hvac- systems/
14	https://www.controleng.com/articles/how-to-select-a-motor-for-an-industrial- application/#:~:text=There%20are%20many%20aspects%20to,or%20a%20servo%2Fstepper% 20motor.&text=Requirements%20for%20controlling%20motor%20speed%20and%20position% 20also%20need%20to%20be%20considered.
15	https://www.iea-4e.org/wp-content/uploads/publications/2015/09/1 emsa pb 20150917.pdf
16	https://www.iea-4e.org/emsa/our-work/emsa-tools/
17	https://www.iea-4e.org/wp-content/uploads/2020/11/quickguide-mst-tool 1.2.pdf
18	https://www.iea-4e.org/wp-content/uploads/2020/11/webinar-2-motor-systems- tool 20151015.pdf
19	https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A6324&LanguageCod e=en&DocumentPartId=&Action=Launch
20	https://search.abb.com/library/Download.aspx?DocumentID=SM103&LanguageCode=en&Docum entPartId=&Action=Launch
21	https://search.abb.com/library/Download.aspx?DocumentID=3BSM900636&LanguageCode=en& DocumentPartId=&Action=Launch
22	https://library.e.abb.com/public/58b63ea623dddaf9c125786800278df5/56- 61%201m103 ENG 72dpi.pdf
23	https://www.youtube.com/watch?v=mgoZSL2u6Jw
24	https://www.se.com/in/en/work/solutions/motor-control-protection/
25	https://www.iea-4e.org/wp-content/uploads/2020/11/MST Example I - anno 2017.pdf

26	https://www.iea-4e.org/wp-content/uploads/2020/11/MST Example II - anno 2017.pdf
27	https://www.iea-4e.org/wp-content/uploads/2020/11/MST Example II - anno 2017 Solution.pdf
28	https://search.abb.com/library/Download.aspx?DocumentID=B5.0205&DocumentPartID=&Actio n=Launch
29	https://www.motioncontrolonline.org/blog-article.cfm/What-is-a-Brushless-DC-Motor-and-How- Does-It-Work/57
30	https://www.motioncontrolonline.org/blog-article.cfm/What-is-a-Brushless-DC-Motor-and-How- Does-It-Work/57
31	https://circuitdigest.com/article/different-types-of-motors-used-in-electric-vehicles-ev
32	https://www.youtube.com/watch?v=2hsHoMEuS-0
33	https://www.youtube.com/watch?v=AhJRHFfXkdg
34	https://www.youtube.com/watch?v=OtydNtCxYQI

8.1 CIE-4 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	CO	Marks			
1	Portfolio evaluation of Practice Sessions (week1-week6)		10			
2	List the standard safety norms related to electrical motors.					
3	Building and Demonstration of the working Circuit including;i. Drawing of circuit diagram using right symbols10ii. Build the circuit as per the circuit diagram10iii. Demonstrate the performance/operation of a motor25iv. Document the necessary readings of the expected outcome05	1	50			
4	4 Identify the problem and demonstrate the troubleshooting method used to rectify that problem in a motor.					
5	Viva-voce		10			
	Total Marks		100			

8.2 CIE-5 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	СО	Marks	
1	Portfolio evaluation of Practice Sessions (week7-week12)		10	
2	List the standard safety norms related to electrical motors.	1	10	
3	Building and Demonstration of the working Circuit including;i. Drawing of circuit diagram using right symbols05ii. Build the circuit as per the circuit diagram10iii. Demonstrate the performance/operation of a motor15iv. Document the necessary readings of the expected outcome05			
4	Explain the criteria for selection, the process of installation and the importance of timely maintenance and consequences for a motor.	2	15	
5	⁵ Identify the problem and demonstrate the troubleshooting method used to rectify that problem in a motor.			
6	Viva-voce		10	

8.3 SEE Scheme of Evaluation

SL. No.	o. Particulars/Dimension					
1	1 Portfolio evaluation of Practice Sessions (week7-week12)					
2	Building and Demonstration of the working Circuit including;i. Drawing of circuit diagram using right symbols10ii. Build the circuit as per the circuit diagram10iii. Demonstrate the performance/operation of a motor20iv. Document the necessary readings of the expected outcome05v. Comply with standard safety norms related to electrical motors05	5	1 / 4	50		
3	Identify the problem in given motor and demonstrate the troubleshooting used to rectify that problem in a motor.	g method	3	20		
4	Viva-voce			20		
	Tot	al Marks		100		

9. Equipment/software list with Specification for a batch of 20 students

SI. No.	Particulars	Specification	Quantity
1.	Central distribution board with control gear and power supply panel for all M/C.		One
2.	Static converter Input-3phase, 440V,50Hz. Output -15kW,0- 220V Continuously variable.		One set
3.	DC Shunt Motor with mechanical loading (a brake drum) apparatus		One Set
4	3-Phase Squirrel Cage Induction motor with mechanical loading (a break drum) apparatus		Two set
5	Synchronous motor		One set
6	1-phase Capacitor start Induction motor		One set each
7.	F.HP-motors Universal/hysteresis stepper motor, brushless DC motor, stepper motor, spindle motor , Permanent magnet synchronous motor, Reluctance motor		One each
8	1-Phase Variacs	220V,5A	2
9	3-Phase Variacs	440V,15A	3
10	Single-phase IM Various types one in each type		One each
11	Voltmeters	0-300/600 VAC	
12	Ammeters	0-5/10a AC	
13	Power Quality Analyser and Motor analyser		1
14	Motor Testing Tool free software (<u>https://www.iea-</u> <u>4e.org/emsa/our-work/emsa-tools/</u>)		
15	Contactor - 16A, 4POLE, Coil Voltage 220volts/50 hz AC With 2 NO + 2 NC		20
16	Timer (Electronic) 10 NO		10
17	Push button (ON) 2 element type (1 NO + 1 NC)		20
18	Push button (OFF) 2 element type (1 NO + 1 NC)		20
19	Different types of Push button Switches (key type, Illuminated type, Emergency trip mushroom head type		5 Each
20	Limit Switches		20
21	Selector Switches		20
22	Thermal Over load relays (0-16A,415V with 1NO+1NC)		20
23	MCB 16A, 415V, 4pol		10

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Electrical and Electronics Engineering	Semester	IV
Course Code	20EE42P	Type of Course	Programme Core
Course Name	Power Electronics	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale:

Power electronics is the application of solid-state electronics to the control and conversion of electric power. Power semiconductor devices are used to construct converters and inverters in the various applications such as power supplies, Electric drives, Flexible AC Transmission systems and Distribution systems, EV's, Energy storage devices. An Electrical Technician shall apply the knowledge of Power electronics to control and convert Electrical Power for an application.

2. Course Outcomes/Skill Sets: On successful completion of the course, the students will be able to

CO-01	Identify the power electronic devices using relevant datasheets and demonstrate its suitability to produce specified electrical and thermal characteristics.
CO-02	Build a power electronic circuit for a given application, demonstrate its working either in real or simulated environment.
CO-03	Test a given power electronic circuit, identify the problem and troubleshoot to obtain the desired result/output.

Tutorial Lecture Practice (Activity (Knowledge Criteria) (Performance Criteria) **PO*** Week CO Criteria) 1 hour / 4 hours/week (2 hours/batch 3 hours/week week twice in a week) 1a. Study and interpret the datasheet of given power diode and BIT. 1. Concept of power electronics, 1b. Test the given Diode and Draw the layer structure of the BJT for its working condition. power diode and explain it. 1c. Simulate VI characteristics V –I characteristics of power diode. Refer of power diode. 1 1.2 1.4 Table 1 2. Types of power diodes and their applications 2. Simulate output characteristics of Power BJT 3. Types of Power transistors, BJT output characteristics, BJT as a switch. 1a. Study and interpret the datasheet of power MOSFET and IGBT 1b. Identify various Power 1. Operation of N-channel MOSFET by its number and test enhancement power MOSFET, and its transfer characteristic curve, Refer by using a multimeter 2 1,2 1,4 1c. Identify IGBTs by their Application of MOSFET. Table 1 numbers and test by using a multimeter. 2. Structure of IGBT and its characteristics

3. Course Content

			3. Application of IGBT, Compare MOSFET, BJT and IGBT		2a. Simulate the transfer characteristics of power MOSFET and IGBT.2b. Rig up the circuit of power MOSFET as a switch
			1.Layer diagram of SCR and Concept of two transistor analogy of SCR.		1.Test the given SCR for its working condition.
3	1,2	1,4	 2. Static V-I characteristic curve of SCR, Enumerate Reverse blocking, Forward blocking, forward conduction mode. 3. GTO, principle of operation and list its application, layer structure of LASCR and explain its operation. 	Refer Table 1	2. Simulate VI characteristics of SCR, GTO and LASCR.
			1. Layer structure, operation and characteristics of TRIAC		1a. Test the given TRIAC andDIAC for its working condition.1b. Simulate VI characteristicsof TRIAC and DIAC.
4	1,2	1,4	 2. 4-Modes of turn on of TRIAC and state the preferred mode of turn-on. 3. Operation of DIAC and its V-I characteristic, curve, application of DIAC. 	Refer Table 1	2.Build and test a TRIAC- fan motor speed control circuit.
5	1,2	3,4	 SCR Control Circuits: Methods of turn on of SCR General layout of firing circuit. 	Refer Table 1	1.Build R firing circuit and determine the maximum firing angle.
			3. R firing circuit and R-C firing circuit with waveforms.		2. Build R – C firing circuit and determine the maximum firing angle.
6	1,2	3,4	 Construction, operation and characteristics of UJT Synchronized UJT pulse trigger circuit with waveform. 	Refer Table 1	1.Build and test UJT Relaxation oscillator.
			3. Digital firing scheme with waveforms.		2. Build and Test time delay relay using SCR and UJT.
7	1,2	3,4	 Commutation, line commutation, forced commutation and methods of forced commutation, Load commutation and complementary commutation. Voltage and current ratings of SCR and Reliability of SCR, MTBF. 	Refer Table 1	1.Simulate Line commutation and forced commutation circuits and observe waveforms.
			3. How SCR can be protected against overvoltage and over current, di/dt & dv/dt. Different types of mounting of SCR.		2. Construct a snubber circuit for protecting SCR use freewheeling diode to reduce back emf.
8	1,2	4	 CONVERTERS: types of power electronic converters: Single -quadrant semi-converter, two- quadrant full- converter and dual converter. Single-phase full converter RLE type with continuous load gurgant 	Refer Table 1	 1.Build single-phase full controlled bridge converter for resistive load. Trace the waveforms across SCR and load. 2. Simulate single-phase Dual

			3.single-phase dual converter and principle of operation.		converter and observe waveforms.
9	1,2	4	1. Gating pulse requirement of three-phase full converters.	Rofor	1.Test three-phase bridge rectifier module (36MT160)
			2.Three-phase bridge converter and 180 conduction mode with waveforms.	Table 1	2. Simulate three-phase Bridge converter and observe waveforms.
10	1,2	4	 DC Chopper- Step-down and Step-up chopper and its operation. Different chopper configurations- (A, B, C, D and E). Inverter- Types of inverters (VSI 	Refer Table 1	1.Simulate/Build step-down chopper and observe waveforms. 2. Simulate / Build step-up
			and CSI).		chopper and observe waveforms.
11	1,2	4	 Half bridge and full-bridge inverter and its operation. Cycloconverter- Draw the circuit of mid- point Step-down cyclo- converter and its operation with waveforms. 		1.Simulate Full-bridge Inverter and observe waveforms.
			3. Cycloconverter- Draw the circuit of a mid- point step-up cycloconverter and its operation with waveforms.	Refer	2.Build and test a inverter. Ref.7(18)
12	2,3	2,4	 DC-DC converters: 1. Working principle of Buck converter (regulator). 2. Working principle of Boost converter (regulator). Ref.7(9,10,11,12) 		 1a. Build & test IC based - DC -DC converter for different voltages. Ref.7(8) 1b. Test the monolithic synchronous buck regulator (MP2305).
			3.Working principle of Buck-boost and flyback converter. Ref.7(14,15,16,17)		2.Test and Troubleshoot regulators. Ref.7(13)
			1. SMPS and its operation and application.	Table 1	
			2. UPS, Battery size and required voltage for UPS		1a. Identify various input and output sockets/ connectors of the given SMPS.
13	2,3	2,3 2,3,4	3a. Draw the block diagram of		 1b. Identify major sections/ ICs/components of SMPS. 1c. Troubleshoot given SMPS. Ref.7(19,20)
			offline online UPS and its operation. 3b. List basic troubleshooting steps for UPS. Ref.7(21,23)		 2a. Identify front panel control & indicators of UPS. 2b. Connect battery & load to UPS & test on battery mode. 2c. Open top cover of UPS & identify isolator transformer & UPS transformer & additional circuit other than inverter.

				 2d. Identify various circuit boards in UPS and monitor voltages at various test points. 2e. Test UPS under fault condition & rectify fault. Ref: 7(22,24)
Total in hours		39	13	52

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive).

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Students and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution).

Sl No	week	Activity
1	1	Study a datasheet of power diode 6A01-6A0, select a diode which has peak repetitive voltage (VRRM) of 1000V, RMS Voltage of 700V, Average rectified current of 6 Amp, can withstand temperature of 150 degrees Celsius. Demonstrate in the class importance of the Datasheet in selecting a diode for given electrical and thermal characteristics. Demonstrate method of mounting of a given power diode or its alternative.
2	2	 Study Data sheet of given IGBT (FGA15N120 IGBT) 1. Explain Pin description of IGBT 2. List Explain the features of given IGBT 3. List alternatives for given IGBT 4. List applications of IGBT 5. Rig up a circuit to turn on/ off IGBT 6. Explain switching characteristics of given IGBT
3	3	 Study Data sheet of given SCR (TN3050H-12WY) 1. Explain features of given SCR 2. Explain Pin description of given SCR 3. Analyse electrical characteristics of SCR, check suitability of SCR for a given specification.
4	4	 Study Data sheet of given TRIAC (BTA16-600CW3G) 1. Explain features of given TRIAC 2. Explain Pin description of given TRIAC 3. Analyse electrical characteristics of TRIAC, check suitability of TRIAC for a given specifications.
5	5	Design an R-triggering circuit for a half wave-controlled rectifier circuit for 24 V ac supply. The SCR to be used has the following data. Igmin = 0.1 mA, Igmax = 12 mA, Vgmin = 0.6V, Vgmax = 1.5 V
6	6	Design a UJT relaxation oscillator using UJT2646 for triggering an SCR. The UJT has the following parameters η = 0.63, VBB = 20 V, VP = 13.2 V, IP = 50 μ A VV = 2 V, IV = 6 mA, RBB = 7 k Ω , leakage current = 2.5 mA Also find the minimum and maximum time period of oscillation.
7	7	Design snubber circuit to protect given SCR against dv/dt used in single-phase converter circuits. Input line to line voltage has peak value of 425 volts and source inductance is 0.2 H

8	8	 1.Explain advantages and disadvantages of power electronic converters. 2. Study Industrial rectifiers List Types of Industrial rectifiers and their applications Typical specifications of commercially available rectifiers Cooling methods employed in rectifiers. 			
9	9	 Study given Standard Rectifier Module (VU0190-16N07) 1. List the features of given Rectifier module 2. List applications of given Rectifier module 3. Explain the different ratings of the Rectifier module. 4. Check its suitability for a given specification Study Industrial rectifiers List Types of Industrial rectifiers and their applications Typical specifications of commercially available rectifiers Cooling methods employed in rectifiers 			
10	10	Study the Intelligent Power Module (STK551U3A2A-E) 1. Explain features of Intelligent power module 2. List applications of Intelligent power module 3. Explain rating of given IPM			
11	11	 Study research report "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends" 1. Explain Block diagram of an electric vehicle powertrain. 2. Compare batteries, supercapacitors and fuel cells. 3. Explain Categories of DC-DC Converter for EVs' Powertrain 4. Parameter comparison of Si with respect to Wide Bandgap Semiconductors (SiC and GaN.) 5. Explain Why WBGs (SiC and GaN.) are preferred in EVs 			
12	12	Study the latest technological changes in this course and present the impact of these changes on industry.			
13	13	Study the latest technological changes in this course and present the impact of these changes on industry.			

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	
2.	CIE-2 Written Test	9	80	30	Average of three tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
Total (CIE Marks	60			
Semester End Examination (Practice)180100					40
Total	Marks				100

5. Format for CIE written Test

Course Name		Power Electronics	Test	I/II/III	Sem	III/IV	
Course Cod	le	20EE42P	Duration	80 Min	Marks	30	
Note: Answ	ver a	ny one full question from each section. Eac	h full questi	on carries 1	0 marks.		
Section		Assessment Questions		Cognitive Levels	Course Outcome	Marks	
Ι	1						
	2						
II	3						
	4						
III	5						
	6						
Note for the	Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks. Cognitive level and course outcomes						

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl. No.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5 5						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No	Description
1	Power Electronics by Dr P S Bimbhra , Khanna Publishers, New Delhi
2	Industrial Electronics and Control Biswanath Paul PHI Publication Edition-II
3	Thyristorised power controllers GK Dubey
4	Power and industrial Electronics by Harish C Rai
5	Power electronics by Mohan Undeland & Robbins, Wiley Publications
6	Modern Power Electronics by P.C.Sen
7	Power Electronics – RaghunathRao
8	https://components101.com/ics/ncp3064-dc-dc-converter-ic
9	https://www.youtube.com/watch?v=4IQBN6Oy8Lg
10	<u>https://www.youtube.com/watch?v= Rf29oUGpwI</u>
11	https://www.youtube.com/watch?v=vmNpsofY4-U
12	https://www.youtube.com/watch?v=yD7fMylYgXw
13	https://www.youtube.com/watch?v=-3tBw6WSZVM
14	https://www.youtube.com/watch?v=zNfbbPobtus
15	https://www.youtube.com/watch?v=ZiD X-uo TQ
16	https://www.youtube.com/watch?v=9 jaxiXhE
17	https://www.youtube.com/watch?v=Fk-B6006GB8https

18	https://www.youtube.com/watch?v=6CsTIPjFZ48 www.youtube.com/watch?v=I8c5DLJgS30
19	https://www.youtube.com/watch?v=PPLjXkca7eo
20	https://www.powersupplyrepairguide.com/previewsmpsebook.pdf
21	https://www.youtube.com/watch?v=C1BYo88HSU0
22	https://www.youtube.com/watch?v=3oq18dZmb3Q
23	https://www.apc.com/lr/en/faqs/FA279110/
24	<u>https://www.youtube.com/watch?v=lkriUIUdflM</u> https://www.youtube.com/watch?v=JHgKBDoQCyQ
25	https://inst.eecs.berkeley.edu/~ee100/su07/handouts/EE100-MultiSim-Tutorial.pdf
26	http://eceweb1.rutgers.edu/~psannuti/ece223/Manual-for-multisim.pdf
27	https://www.multisim.com/help/getting-started/

8.1 CIE-4&5 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	СО	Marks	
1	Portfolio evaluation of Practice Sessions		10	
2	Identify and explain the Data Sheets for the given power Electronic Devices	1	10	
3	Demonstrate the working condition of power electronics devices (power Diode, power transistors).	2	10	
4	4 Identify the problem in a given circuit and demonstrate the troubleshooting method used to rectify that problem.			
5	Building and Demonstration of the working Circuit includingi.Drawing of the Circuit diagram using the right symbols05ii. Build the circuit as per the circuit diagram10iii. Demonstrate the working of the circuit.20iv. Document the necessary readings of the expected circuit outcomes.05	2	40	
6	Viva-voce		10	
	Total Marks		100	

8.2 SEE Scheme of Evaluation

SL. No.	SL. Particulars/Dimension			
1	Portfolio evaluation of Practice Sessions			10
	Building and Demonstration of the working Circuit including	10		
	i.Drawing of the Circuit diagram using the right symbols	10		
	ii.Identify and explain the Data Sheets for the given power Electronic Dev	ices.10		
2	iii. Demonstrate the working condition of power electronics devices.	10	2	70
	iv. Build the circuit as per the circuit diagram	15		
	v. Demonstrate the working of the circuit.	20		
	iv. Document the necessary readings of the expected circuit outcomes.	05		
3	Viva-voce			20
	Total	Marks		100

9. Equipment/software list with Specification for a batch of 20 students

SI. No.	Particulars	Specification	Quantity
1	DC Regulated power supply	(0-300V, 2A)	5
2	DC Regulated Dual power supply	(0-30V,2A)	5
3	Cathode Ray Oscilloscope	Dual trace, 25 MHz.	5
4	Digital Multimeter	31 /2"1-ph	5

5	1-ph Induction Motor	220v,1ph,	1
6	Battery	6 V/12 V 60 AH	2
7	SMPS		5
8	UPS 2kVA	2 kVA	1
	Software		
1	GNU-Octave/MatLab/P-spice/Multisim		20 License

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Electrical and Electronics Engineering	Semester	IV
Course Code	20EE43P	Type of Course	Programme Core
Course Name	Fundamentals of Automation Technology	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale:

The aim of this course is to introduce students to the present Industrial Automation scenario in India. The broad knowledge of essential component of present industrial Automation Industry such as Programmable Logic Controller (PLC), Distributed Control System (DCS), Supervisory Control and Data Acquisition (SCADA), industrial drives, human machine interface will enable the students to maintain the above automation controls systems used in the present industry. Thus this course is very important for students who want to use their knowledge of electronic engineering for working in the industrial automation sector.

2. Course Outcomes/Skill Sets: On successful completion of the course, the students will be able to

CO-01	Select a suitable sensor and actuator for a given automation application and demonstrate its use in a specific application.
CO-02	Install, test & control the pneumatic actuators using various pneumatic valves.
CO-03	Develop ladder diagrams for a given application and explain its implementation process using PLC.
CO-04	Describe the concept of SCADA and DCS systems and list their various applications.

3. Course Content

Week	СО	P0*	Lecture (Knowledge Criteria)	Tutorial (Activity Criteria)	Practice (Performance Criteria)
			3 hours/week	1 hour/	4 hours/week (2 hours/batch
				week	twice in a week)
1	1	2,3, 4	 How do engineers work, technical drawings and parts lists, Circuit diagrams, Flow charts and programs. Ref.7(1) Technical plans and schematic diagrams, Calculations and simulation Automation technology as a part of 	Refer Table 1	Video demonstration on Automation technology
			engineering sciences, Key development milestones in the history of automation technology, Effects of automation on people.		
			1. How a solenoid works- Structure of a solenoid, Applications of solenoids		1.Test a Linear Actuator Solenoid
2	1	1,4	Ref.7(1)2. Solenoids as simple actuators.3.How switches work and their structure-Normally open contacts, normally closed contacts, Changeover switches.	Refer Table 1	2.Install, wire and test digital time delay relay -

			Relays and contactors-Structure of a relay, Applications of relays, Time relays. Ref.7(1)		
3	1	1,4	 1.Sensors: operation, characteristics and application: Inductive Proximity Sensors, Magnetic Proximity Sensor. 2. Capacitive proximity sensors, Optical proximity sensors, Ultrasonic proximity sensors 	Refer Table 1	 1a. Identify and test different sensors. 1b. Select a suitable proximity sensor for a given application and wire up the same. Ref 7(2)
			3. Linear Position sensors, Photoelectric sensors. Infrared sensors Limit Switches.		2.Develop a relay-based motor control automation such that the motor reverses its direction when the limit switches are activated.
4	1	4	1. Inductive linear transducer, area sensors, flow sensors Ref.7(1)		1.Identify and test different sensors.
			2. Temperature sensors, colour sensors, Hall effect sensor		2. Simple Hall effect sensor Latching ON/OFF Relay switch Circuit.
			 3a. Pressure sensors -Electronic pressure switches with binary output signal. 3b. Concept of Sensor latching. Latching Digital Hall effect sensor. 		
5	2	1,4	1. Fundamentals of pneumatics- Individual components in a pneumatic control system and their functions. Ref.7(1)	Refer Table 1	1a. Controlling of single- acting cylinder by 3/2 push- button valve/ solenoid valve b. Controlling of double- acting cylinder by 5/2 push- button valve/S olenoid valve c. Identify industrial applications of Single acting and Double acting cylinder. Ref 7(3,4)
			2. Functions and features of actuators (pneumatic cylinders)- Single-acting cylinder, Double-acting cylinders, Speed regulation with single-acting cylinders, Speed regulation with double-acting cylinders.		
			3. Functions and features of pneumatic valves- Pneumatic valve designations and symbols, Pneumatic valve actuation types, controlling a single- acting cylinder, Controlling a double- acting cylinder		2 a. Speed control of single- acting cylinders by flow control valve b. Speed control of double- acting cylinders by flow control valve
6	2	1,4	1. Functions and features of pneumatic drives- Guided cylinders, rodless linear drives and rotary drives. Ref.7(1)	Refer Table 1	1. Demonstrate the use of Pneumatic drives (used in small robots)
			2. Pneumatic grippers.		2. Demonstrate the use of Pneumatic grippers.

			3. Pneumatic control system represented in a circuit diagram- Symbol designations in circuit diagrams.		
7	1	1,4	 Electric drives: Physical/technical fundamentals of the DC motor. Activating DC motors Working principle of Variable frequency drive 	Refer Table 1	 Activate the DC motor using 2 relays to run the motor forward and backward direction. Install and control speed of 3-ph motor using VED
8	3	1,4	 Fundamentals of control technology: Meaning of control system, open loop and closed system with examples. Different types of controllers (PLC, CNC, Hard-wired programmed control systems, robot controllers) How programmable logic controllers (PLCs) work and their structure. Advantages and Disadvantages of PLC. Mathematical fundamentals – basic logic functions-Identity (YES function), Negation (NOT function), Conjunction (AND function), Disjunction (OR function), XNOR and XOR. 	Refer Table 1	1.Demonstrate open loop and closed systems observed in everyday life.
			3. Examples of controller structure.		2. Demonstrate Industrial applications of PLC
9	3	1,4	1. Programmable logic controllers- Internal architecture and functional structure. Input/output modules.	Refer Table 1	 1.a. Identify Components of PLC b. Identify different types of PLC c. Identify different input and output devices of PLC d. Identify the wiring mode of PLC- sourcing and sinking modes
			 2a. List input / output devices of PLC. -List types of PLC. 2b. Functions of Programming equipment (Programmer/monitor) 3a. Explain PLC Programming Languages –Ladder diagram/ Functional Block Diagram /Instruction List/structured text. 3b. Explain scope of f IEC standard for PLC: IEC 61131 		2.Identify and Install Programming Software and communication driver.
10	3	2,3, 4	 1a. Operation cycle of PLC: Input scan, Program scan and Output scan. 1b. Operation modes of PLC: program, run and test modes. Data files and program files. 2.Configuration of I/Os and Addressing I/Os, study of PLC symbols. 		 1.Develop and test the ladder programs for the following motor controls: a) Starting from two different locations (OR Function) b) Stopping from one position (NOT Function)
			3. Procedure for drawing ladder diagram, connection of inputs and outputs to input and output module and entering ladder program into PLC (CPU). Draw the ladder diagram for a simple example of one-contact, one-coil circuit and connection diagram showing how inputs are connected to the input and output module of PLC.	c) T Fun d) S diffe or N e) S give fund f) M maii g) Ir (XN 2. D prog mot sim	wo hand operation (AND ction) topping from two erent locations (NOT+OR OR Functions) topping if both signals are in (NOT+AND or NAND ctions) emory function (Signal is ntained or holding) iterlocking protection OR/XOR) evelop and test the ladder gram for interlocking two ors, using PLC ulation software.
----	---	-----------	--	--	---
			1.Most commonly used PLC programming instructions and their applications: XIC, XIO, OTE. Latch, Unlatch	1a. l prog mot in se dela	Develop and test ladder gram for switching ON or 1, motor 2 and motor 3 equence with some time by, using PLC simulation
11	3	2,3, 4	2.Describe Timer instructions and their application: Describe Timer On Delay (TON), Timer Off Delay (TOF), Retentive Timer On (RTO)	soft 1b. 1 ladd syst cond noth inpu turn are	ware. Develop and test the ler program of the Alarm em for the following ditions: If one input is ON- ning happens, if any two ats are ON- a red light as ON, If any three inputs ON- a Hooter/Alarm
				turn simi	is ON, using PLC ulation software.
			3.Describe counter instructions and their application: COUNT UP, COUNTDOWN, UP/DOWN COUNTER Examples of use of counter and timer instructions.	2a. Prog Star sim 2b. J Prog was sim	Develop and test ladder gram for fully Automatic -Delta starter, using PLC ulation software. Develop and test ladder gram to control automatic hing machine, using PLC ulation software.
12	3	2,3, 4	Wiring sensors to PLC 1.Wiring push button to PLC, and selector switch to PLC	1.D Lado sens vari LED (pro is ac i. Dr ii. D iii. V inpu outp iv. E into exec	evelop and run simple der programs to read sor status and to control ous output. is turned ON when a oximity sensor) sensor ctivated. raw the ladder diagram raw PLC wiring diagram. Vire push buttons to at module and LED to out module. Inter the ladder program the PLC simulator and cute.

					v. If the program is error free, Upload the program into PLC and execute. vi . observe the output
			2.Wiring NPN sensor to PLC		2. Double acting cylinder is used to perform machining operations. Pneumatic cylinder is advanced by pressing two push buttons simultaneously. If any one of
			3.Wiring PNP sensor to PLC		the push button is released, cylinder comes back to start position. Draw the pneumatic circuit, PLC wiring diagram and ladder diagram to implement this task.
13	4	2,3, 4	 1.Meaning of SCADA -Functions of each component of SCADA system, -Describe SCADA Hardware and software -Applications of SCADA. 2.Meaning of HMI and its applications. -Need & types of HMI. -Advantages of HMI. -Advantages of HMI. -Various software's used for Programming HMI. -Interfacing HMI and PLC- General block diagram. 3. Concept of DCS -Hierarchy of DCS. -Functions of each level of DCS. 		Demonstrate application of SCADA/HMI/DCS
Total in hours		rs	39	13	52

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive).

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl No.	Week	Activity
1	1	Prepare a report on how Automation impacts our lives at present.

2	2	 Study time relay Explain the use of time relay in Traffic signal control with a circuit diagram Explain working of circuit List different types of timer relays used in circuit Explain specification and feature of given INTERVAL ON delay relay Explain specification and feature of given SINGLE SHOT time delay relay
3	3	 I. Study LVDT 1. Explain working principle of LVDT 2. List the applications of LVDT 3. List the benefits of LVDT II. Develop an automatic door system using optical sensor and linear actuator. https://www.instructables.com/Automatic-Door-Opening-and-Closing-System-Using- IR/
4	4	 Study digital Hall effect sensor (SS361RT, SS461R). 1. List features of Hall effect sensor 2. List applications Hall effect sensor 3. Explain electrical characteristics of Hall effect sensor
5	5	 I. List the advantages of pneumatics and explain application of pneumatics in automation. II. Problem statement: Workpieces are transported to a processing unit on a conveyor belt. The workpieces have to be separated upstream of the processing unit. The separating cylinder's end positions are monitored using magnetic proximity switches. 1. Describe the function of a magnetic proximity switch. 2. Select a suitable proximity switch for monitoring the end position of a cylinder 3. Explain terminology from the field of proximity switch technology. 4. Determine whether or not a solenoid valve can be directly actuated by a proximity switch. 5. Describe different types of proximity switches
6	6	 I. For the given application (Sorting device for metal stampings) 1.Suggest Suitable pneumatic cylinder 2. Draw circuit diagram II. For the given application (separating parcel post) 1.Suggest Suitable pneumatic cylinder 2. Draw circuit diagram III. For the given application (Quarry stone sorter) 1.Suggest Suitable pneumatic cylinder 2. Draw circuit diagram
7	7	 Study given commercially available VFD 1. List its features 2. Applications of VFD 3. Explain specification of VFD 4. Types of VFD available in the market.
8	8	Study PLC based sand mixing Machine1. Explain sequence of operation2. Draw and explain the relay Ladder Logic diagram3. Draw and explain the Ladder diagram
9	9	Study LIFT Control using PLC 1. Explain sequence of operation. 2. Draw and explain the Ladder diagram.
10	10	Study PLC Conveyor Motor Ladder Logic 1. Explain sequence of operation

		 Draw the relay schematic Draw the Ladder diagram Explain the type of sensor used to detect the object
11	11	Prepare a report on Industry 4.0 and present.
12	12	Study the latest technological changes in this course and present the impact of these changes on industry.
13	13	Study the latest technological changes in this course and present the impact of these changes on industry.

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	
2.	CIE-2 Written Test	9	80	30	Average of three tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	IE-5 Skill Test-Practice 12		100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
Total (CIE Marks			60	
Semes	ter End Examination (Practice)		180	100	40
Total	Marks				100

5. Format for CIE written Test

Course Name		Fundamentals of Automation Technology	Test	I/II/III	Sem	III/IV	
Course Cod	le	20EE44P	Duration	80 Min	Marks	30	
Note: Ansv	ver a	ny one full question from each section. Eac	h full questi	on carries 10) marks.		
Section Assessment		Assessment Questions		Cognitive Levels	Course Outcome	Marks	
Ι	1						
	2						
II	3						
	4						
III	5						
	6						
Note for the	Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions						

in each section carry the same weightage of marks, Cognitive level and course outcomes.

Sl.	Dimension	Beginner	Intermediat	Good	Advanced	Expert	Students
No.			е				Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	https://dlb.sa.edu.au/rehsmoodle/file.php/441/Teachware/563060 Fundamentals of automat
1	ion technology.pdf
2	https://www.festo-didactic.com/ov3/media/customers/1100/566920 leseprobe en 2.pdf
3	https://www.youtube.com/watch?v=ZXANgP-q6b4
4	https://www.festo-didactic.com/ov3/media/customers/1100/566910 leseprobe.pdf
5	https://www.youtube.com/watch?v=GhS1qpHoSX0
6	https://www.youtube.com/watch?v=O-hbGD HsYk
7	Control of Machines- S.K. Bhattacharya & Brijinder Singh, New Age International Publishers
8	Programmable Logic Controllers: John W.Webb, Ronald A.Reis, PHI
9	Introduction to PLC by Gary Dunning, Cengage Learning.
10	Mechatronics: W.Bolton
11	https://nptel.ac.in/content/storage2/courses/112106175/downloads/Module%204/SELF%20
11	EVALAUTION/SE-Lecture%2041.pdf
12	https://accautomation.ca/wiring-push-buttons-and-selector-switch-to-click-plc/
13	https://realpars.com/discrete-sensors-part-1/
14	https://www.automationdirect.com/adc/overview/catalog/sensors -z- encoders
15	https://www.rtautomation.com/technologies/control-iec-61131-3/
16	https://davidrojasticsplc.files.wordpress.com/2009/01/libro-en-espanol.pdf

8.1 CIE-4 Skill Test Scheme of Evaluation

SL.	Particulars / Dimension	CO	Marks
No.			Marks
1	Portfolio evaluation of Practice Sessions (week1-week6)		10
2	 Identify different pneumatic components Identify various sensors 	1&2	10
3	Select and test suitable sensor for a given application 05+15	2	20
4	Test a given Linear Actuator Solenoid OR Install, wire and test digital time delay relay	2	15
5	Demonstrate & control the Pneumatic actuators using pneumatic valves.i.Draw the circuit diagram using right symbols05ii.Build the circuit as per the circuit diagram10iii.Demonstrate the operation of a Pneumatic actuators20	3	35
6	Viva voce		10
	Total Marks		100

8.2 CIE-5 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	C O	Mark s
1	Portfolio evaluation of Practice Sessions (week7- week12)		10
2	i. Identify different input and output devices of PLC	3	10

	ii. Identify various indicators on PLC Modules.		
3	Explain Scope of IEC standard for PLC: IEC 61131	3	10
4	Demonstrate the implementation of given application using PLCi.Draw the ladder diagram and PLC wiring diagram using right symbols 10ii.Simulate the ladder diagram using PLC simulator and check the automation logic by activating the respective inputs20iii.Upload the Ladder program into PLC and execute10iv.Demonstrate desired output from PLC.20	3	60
5	Viva voce		10
	Total Marks		100

8.3 SEE Scheme of Evaluation

SL. No.		Particulars/Dimension			
1	Portfolio e	evaluation of Practice Sessions			10
2	i.	For a given automation application select suitable pneumatic components and sensors.		1, 2	10
	Demonstr	ate & control the Pneumatic actuators using pneumatic valves.			
	i.	Draw the circuit diagram using right symbols	10		
	ii.	Build the circuit as per the circuit diagram	20		
	iii.	Demonstrate the operation of a Pneumatic actuators	10		
		OR			
3	Demonstr	ate the implementation of given application using PLC		1/3	4.0
	i.	Draw the ladder diagram using right symbols	10		40
	ii.	Simulate the ladder diagram using PLC simulator and check the			
		automation logic by activating the respective inputs	15		
	iii.	Upload the Ladder program into PLC and execute	05		
	iv.	Demonstrate desired output from PLC.	10		
4	Demonstr	ate simple application of SCADA using SCADA software.		4	20
5	Viva voce				20
		Total	Marks		100

9. Equipment/software list with Specification for a batch of 20 students

SI. No.	Particulars	Specification	Quantity
1	Small compressor	4 bar, 1.5 HP,0-4 bar pressure, 0-10 litres	1
2	Linear Actuator Solenoid 12V		20
3	Inductive. Proximity Sensors. Magnetic Proximity Sensor, Limit Switches		20 each
4	Capacitive proximity sensors, Optical proximity sensors Ultrasonic proximity sensors		20 each
5	Infrared sensors, Pressure Sensor and Switch		20 each
6	Inductive linear transducer , Area sensors, Flow sensors, Temperature sensors, colour sensors		20 each
7	single-acting cylinder, double-acting cylinder		10 each
8	3/2 and 5/2 push-button valve		10
9	3/2 and 5/2 solenoid valve		10
10	Flow control valves		10
11	Digital time delay relay		5
12	Direction control Valve, Double Acting Solenoid		10 each

13	Pneumatic Grippers		5
14	FRL (filter, regulator and lubricator) unit		2
15	PLC Systems with digital I/P, O/P modules and software	12/24v Dc/relay, 8 Digital Inputs, 4 Digital Outputs, ethernet card standard micro SD card, integrated webserver	10
16	Variable frequency drive	3-phase, 1HP, VFD	1
17	1 HP induction motor with DOL starter	1 HP	1
18	SCADA Software		1

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	gramme Electrical and Electronics Engineering		IV
Course Code	20EE44P	Type of Course	Programme Core
Course Name	Computer Aided Electrical Drafting (CAED)	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale:

All equipment, installations, circuits and other electrical and electronic systems in the power and industrial sector need drawings for their manufacturing, installation, operation and maintenance. A technician working in design, shop floor and field area must possess the skill of reading, interpreting different drawings and to use Computer Aided Drawing (CAD) software to draw 2D & 3D Electrical drawings.

2. Course Outcomes/Skill Sets: On successful completion of the course, the students will be able to

CO-01	Study a given drawing and list all the electrical elements.
CO-02	Draw a single line diagram and control panel board wiring drawing for a given specification.
CO-03	Draw a winding and assembly drawing for a given machine and translate the assembly 2D drawing into a 3D drawing using CAD software.
CO-04	Draw a simple PLC module drawing for a given requirement using standard symbols.

3. Course Content:

Week	со	PO*	Lecture (Knowledge Criteria)	Tutorial (Activity Criteria)	Practice (Performance Criteria)
			3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	1	1,4	 INTRODUCTION to CAD commands. Practice essential commands like – line types, line weight, scale, unit, Layer, block, insert, explode, purge, table, attribute, quick select view, multi-view, break, join, filter, find, pan, list match properties and related commands 	Tutorial hours shall be used to practice drawings.	Practice the basic CAD commands. Ref .7(1,2,3,4,5)
2	1,2	1,4	Single line diagram of 110 KV/11KV MUSS	Tutorial hours shall be used to	1. Single line diagram of 110 KV/11KV MUSS. Ref .7(10,11)
			Single line diagram 11KV of drawings.	drawings.	2. Single line diagram of 11KV Substation. Ref .7(12,13,14)
3	1,2	1,4	 Draw and Create BOM (Bill of Material): Electrical wiring of a residential/Hospital building Draw and Create BOM (Bill of Material): Electrical wiring of a small workshop 	Tutorial hours shall be used to practice drawings.	 Draw the wiring layout of residential building/Hospital and generate BOM for a given plan with AEH. Ref .7(7,8,9) Draw a wiring layout of a small workshop with 3 lathes, 1 drilling machine, 1 welding machine, 1

					grinding machine and generate BOM (Bill of Material).
4	1,2	1,4	Motor control Panel board Wiring.	Tutorial hours shall be used to practice drawings.	Draw MCC (Motor Control Centre) Panel board Wiring and create BOM. Ref .7(15)
5	1,2	1,4	Design a GA LT panel wiring drawing.	Tutorial hours shall be used to practice drawings.	Design an Electrical General Assembly of LT panel wiring. Ref .7(16)
6	1,2	1,4	Developed Winding Diagrams of 3-ph A.C. Machines: Single Layer Double Layer	Tutorial hours shall be used to practice drawings.	1.Develop a winding diagram- A.C. windings-Single Layer Ref.7(6) 2.Develop a winding diagram- A.C. windings- Double Layer
7	1,2	1,4	Developed Winding diagram of 1-ph, AC Induction Motor	Tutorial hours shall be used to practice drawings.	Develop a winding diagram for a 1-ph, Induction Motor, make terminal connections for Running & Starting Winding.
8	1,3	1,4	Transformer Assembly-Three- phase	Tutorial hours shall be used to practice drawings.	Three-phase core type 200KVA 33KV/400V transformer front elevation full in section, plan in full section. Ref .7(18)
9	1,3	1,4	Assembly drawing- Squirrel cage Induction motor.	Tutorial hours shall be used to practice drawings.	Draw the half end view and half sectional front elevation and half sectional end view for a 3HP 400V 50HZ 3PH 1440 RPM - Squirrel cage Induction motor. Ref.7(19)
10	1,3	1,4	Assembly drawing- Rotor of a 15KVA Alternator	Tutorial hours shall be used to practice drawings.	Draw the half sectional end view top half in section and half sectional front elevation for a Rotor of a 15KVA Alternator for a given sketch. Ref.7(20)
11	1,3	1,4	Assembly drawing – 4 Pole 25 KVA synchronous motor	Tutorial hours shall be used to practice drawings.	Draw half size half sectional elevation and half sectional end view. Ref .7(21,22)
12	3	1,4	3D Drawing- Squirrel cage Induction motor.	Tutorial hours shall be used to practice drawings.	3D view showing different parts. Ref .7(23)
13	1,4	1,4	PLC Module	Tutorial hours shall be used to practice drawings.	Design a Simple PLC Module showing I/O points. Ref .7(24,25)
Total in hours		rs	39	13	52

*PO= Program Outcome as listed and defined in year 1 curriculum and CO-PO mapping with strength (Low/Medium/High) has to be mapped by the course coordinator. (Above only suggestive).

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	
2.	CIE-2 Written Test	9	80	30	Average of three tests
3	CIE-3 Written Test 13		80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics			10	10
Total	CIE Marks	-			60
Semes	ster End Examination (Practice)		180	100	40
Total	Marks		100		

5. Format for CIE written Test

Course Name		Computer Aided Electrical Drafting (CAED)	Test	I/II/III	Sem	III/IV
Course Coc	le	20EE43P	Duration	80 Min	Marks	30
Note: Answer any one full question from each section. Each full question carries 10 marks.						
Section		Assessment Auestions		Cognitive	Course	Marks
Section		Assessment Questions			Outcome	Marks
т	1					
1	2					
п	3					
11	4					
ш	5					
111	6					
Note for the	e Cou	rse coordinator: Each question may have o	ne, two or th	ree subdivis	ions. Option	al questions

in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl. No.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

SI. No.	Description
1	Computer Aided Electrical Drawing - YOGESH, NAGARAJA,NANDAN PHI Publication
2	Electrical Drafting - S.F. DEVALAPUR

3	https://www.youtube.com/watch?v=pvKVy-eMDYc
4	https://www.youtube.com/watch?v=2ni0AWbloQA
5	https://www.youtube.com/watch?v=wIN61lmZByw
6	https://www.youtube.com/watch?v=OONCU5QbDpU
7	https://www.youtube.com/watch?v=asVQ3ncmqhY
8	https://www.youtube.com/watch?v=X1MsYDEkHpU
9	https://www.youtube.com/watch?v=8DEap6exAB0
10	https://www.youtube.com/watch?v=YXLhvA7dMb4
11	https://www.youtube.com/watch?v=ZRXIWoT-FRU
12	https://www.youtube.com/watch?v=Bk8YOLr0KFM
13	https://www.youtube.com/watch?v=Fa5gYiapD1E
14	https://www.youtube.com/watch?v=cKKvLXaV1g8
	https://www.google.com/imgres?imgurl=https://5.imimg.com/data5/GZ/CR/MG/SELLER-
	40839587/capture7-500x500.PNG&imgrefurl=https://www.indiamart.com/proddetail/electrical-
15	ga-general-assembly-design-
	22445785697.html&docid=t83B C9sNcBtnM&tbnid=nqa2KujeGdTYhM&vet=1&w=500&h=339&hl=
	en-US&source=sh/x/im#imgrc=nqa2KujeGdTYhM&imgdii=pQlfLt4RiUOsdM
	https://www.google.com/imgres?imgurl=https://5.imimg.com/data5/GZ/CR/MG/SELLER-
	40839587/capture7-500x500.PNG&imgrefurl=https://www.indiamart.com/proddetail/electrical-ga-
16	<u>general-assembly-design-</u>
	22445785697.html&docid=t83B_C9sNcBtnM&tbnid=nqa2KujeGdTYhM&vet=1&w=500&h=339&hl=e
	n-US&source=sh/x/im
17	https://www.youtube.com/watch?v=XsKbtm60tAw
18	https://www.youtube.com/watch?v=fXOwgNYT0hg
19	https://www.youtube.com/results?search_query=Squirrel+cage+Induction+motor++assembly+cad+
	drawing
20	https://www.youtube.com/watch?v=nk hmXUtiPk
21	https://www.youtube.com/watch?v=nk hmXUtiPk
22	https://www.youtube.com/watch?v=rgP0aMth7LM
23	https://www.youtube.com/watch?v=fAN9jxydoMA&t=144s
24	https://www.youtube.com/watch?v=fTjd86ui5iM
25	https://www.youtube.com/watch?v= 0b2YDYFgZA
26	https://bescom.karnataka.gov.in/page/Departments+of+Corporate+Office/Quality%20Standards%
	20and%20Safety/Drawings/en
27	https://www.electricaltechnology.org/2012/02/star-delta-3-phase-motor-starting.html

8.1. CIE-1 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension		Marks
1	Draw the single line diagram of a MUSS/substation25i.Use of suitable commands25ii.Labelling15iii.Indexing10		50
2	Draw the wiring diagram of a MCC Panel Board25i.Use of suitable commands25ii.Labelling15iii.Indexing10		50
		Total Marks	100

8.2: CIE-2 Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension			
	Design a Simple PLC Module showing I/O points.			
1	i. Use of suitable commands	20	40	
1	ii. Labelling	10	40	
	iii. Indexing	10		
	Assembly drawings Sectional end view and front elevation (Front e	levation and plan		
	in case of transformer)			
	i. Use of suitable commands 1	0		
2	ii. Sectional end view/ front elevation 1	5	50	
	iii. Front elevation/plan 1	0		
	iv. Dimensioning 1	0		
	v. Labelling 0	5		
3	Translate 3D drawing for the given Sketch (CAD)		10	
		Total Marks	100	

8.3: SEE Scheme of Evaluation

SL. No.	Particulars/Dimension	СО	Marks
1	Winding diagrams Draw the winding diagram using CAED software. 20 i. Develop winding table 05 ii. Draw sequence diagram 05 iii. Mark the poles 05 iv. Show the direction of induced emf and indicate the position of brushes and show the direction of current. 05 OR Single line diagram Draw the single line diagram of a MUSS/substation i. Use of suitable commands 20 ii. Labelling 10 OR Building wiring drawing/Panel Wiring Drawing Estimate and draw Electrical wiring of a residential building/ Estimate and draw: Electrical wiring of a small workshop. 20 ii. Labelling 10 iii. Indexing 10	1,2	40
2	Assembly drawingsSectional end view and front elevation (Front elevation and plan in case of transformer)i.Use of suitable commandsii.Sectional end view/ front elevation1010iii.Front elevation/planiv.Dimensioningv.Labelling05083D Drawing- Squirrel cage Induction motor.i.Use of suitable commands1015iii.Indexing1010	1,3, 4	50
3	Viva-voce		10
	Total Marks		100

Particulars Sl. No. Specification Quantity Operating System: 64-bit • Microsoft Windows 10. Processor: 2.5 GHz (3+ GHz • recommended) **Personal Computer** Memory: 8 GB (16GB 1 20 • recommended) Disk space: 1TB. • Display: 1920 x 1080 resolution • with True Color. **Electrical Computer Aided Drafting** 2 **Student edition** 20 Software/ AutoCAD Electrical 2021

9. Equipment/software list with Specification for a batch of 20 students

Government of Karnataka Department of Collegiate and Technical Education

Programme	Audit Course	Semester	IV
Course Code	20EE45T	Type of Course	Audit
Course Name	Indian Constitution	Contact Hours	2 hours/week 26 hours/semester
Teaching Scheme	L:T:P :: 2:0:0	Credits	2
CIE Marks	50	SEE Marks	Nil

1. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	CO1	Understand Preamble, salient features and importance of Indian Constitution.
CO-02	CO2	Understand Fundamental rights, duties and Directive principles of state policy.
<u> </u>		Understand Parliamentary system of governance, Structure, Functions, Power of
LO-03	CO3	Central, state governments (Legislative, Executive) and Judiciary.
CO 04	CO4	Understand Panchayat Raj Institutions and Local self-governments, UPSC, KPSC,
0-04		NHRC, Status of women, RTE etc.

2. Course Content

Week	CO	Detailed Course Content		
1	1	Introduction to constitution of India-Formation and Composition of the Constituent Assembly-Salient features of the Constitution-Preamble to the Indian Constitution	2	
2	1,2	Fundamental Rights- Definition, The right to equality, The right to freedom, The right against exploitation, The right to freedom of religion.	2	
3	1,2	Cultural and educational rights and The right to constitutional remedies. Fundamental Duties, Directive principles of state policy.		
4	1,3	Parliamentary system of governance- Structure of Parliament- Lok Sabha and Rajya Sabha. Functions of parliament- Legislative, Executive, Financial Function Powers of Lok Sabha and Rajya Sabha.	2	
5	1,3	Procedure followed in parliament in making law, Annual financial statement (Budget) – procedure in parliament with respect to estimates, Appropriation bill, Supplementary, additional grants, Vote on account, votes on credit and exception grant, special provisions, rules of procedure.	2	
6	1,3	Structure of union executive, Power and position of President. Vice President, Prime minister and council of ministers.	2	
7	1,3	Structure of the judiciary: Jurisdiction and functions of Supreme Court, high court, and subordinate courts.	2	
8	1,3	Federalism in the Indian constitution- Division of Powers: Union list, State list and concurrent list. Structure of state legislation, Legislative assembly and Legislative council.	2	
9	1,3	Functions of state legislature, Structure of state executive-Powers and positions of Governor, Speaker, Deputy Speaker, Chief Minister and council of minister.	2	
10	4	Local self-government- meaning-Three tier system, Village Panchayat-Taluk panchayat Zilla panchayat, Local bodies-Municipalities and Corporations, Bruhath Mahanagara Palike, Functions of Election commission, UPSC, KPSC.	2	

Total in Hours			
13	1,4	National Human Rights Commission Constitution- Powers and function of the Commission-Employee rights- Provisions made, Contractual-Non contractual employee rights-Whistle blowing-definition-Aspects-Intellectual Property Rights (IPR)–Meaning-Need for protection- Briefly description of concept of patents, Copy right, Trademark	2
12	4	Status of Women in India - Women in rural areas, Constitutional Safeguards - Dowry Prohibition act 1961- Domestic violence act 2005- Sexual harassment at work place bill 2006. Human Rights of Children- Who is a child- list the Rights of the Child- Right to education, Protection of Children from Sexual Offences Act (POCSO)-2012-	2
11	4	Amendment of the constitution, Human Rights-Definition-constitutional provisions-right to life and liberty-Human Rights of Women-Discrimination against women steps that are to be taken to eliminate discrimination against women in Education, employment, health care, Economic and social life,	2

REFERENCES

- Introduction to the Constitution of India- Dr. Durga Das Basu
 Empowerment of rural women in India-Hemalatha H.M and Rameshwari Varma, Hema Prakashana.

4. CIE and SEE Assessment Methodologies

SI. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion	
1.	CIE-1 Written Test	5	80	30	Average of three	
2.	CIE-2 Written Test	9	80	30	tests	
3	CIE-3 Written Test	13	80	30	30	
4.	CIE-4 MCQ	6	60	20	Average of two CIE	
5	CIE-5 Open Book Test	12	60	20	= 20	
Total	CIE Marks	50				
Seme	ster End Examination (Practice)	-				
Total	Marks	50				